How Do Hydrothermal Liquefaction Conditions and Feedstock Type Influence Product Distribution and Elemental Composition?

We investigated the effects of temperature (250–350 °C), reaction time (5–31 min), and solid loading (5–25 wt %) on hydrothermal liquefaction of Spirulina, Miscanthus, and primary sewage sludge using a central composite study design. Response surface methodology was used to identify maxima/minima fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2019-09, Vol.58 (37), p.17583-17600
Hauptverfasser: Madsen, René B, Glasius, Marianne
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the effects of temperature (250–350 °C), reaction time (5–31 min), and solid loading (5–25 wt %) on hydrothermal liquefaction of Spirulina, Miscanthus, and primary sewage sludge using a central composite study design. Response surface methodology was used to identify maxima/minima for yields of gas, bio-crude, aqueous phase (AqP), and solid residue (SR), while the coefficients were used to identify the flux of the four product fractions. Effects on carbon recovery and contents of nitrogen and oxygen of the bio-crude were also assessed. The high bio-crude yields of Miscanthus and sewage sludge mainly resulted from low yields of SR. Higher solid loading of Spirulina and Miscanthus increased bio-crude yields, while carbon recovery often improved with higher temperature and longer reaction time. Common to all feedstocks, the amount of degraded biomass displaced to the AqP decreased with increasing solid loading but simultaneously resulted in more nitrogen in the bio-crude.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.9b02337