High Spin State Promotes Water Oxidation Catalysis at Neutral pH in Spinel Cobalt Oxide
In this work, we present Co3O4 quantum dots (QDs) as a highly efficient and stable oxygen evolution reaction (OER) catalyst at neutral pH. The Co3O4 QDs with a mean size of 5 nm were synthesized by reacting cobalt acetate with benzyl alcohol in the presence of ammonia under reflux conditions. The as...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2018-02, Vol.57 (5), p.1441-1445 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we present Co3O4 quantum dots (QDs) as a highly efficient and stable oxygen evolution reaction (OER) catalyst at neutral pH. The Co3O4 QDs with a mean size of 5 nm were synthesized by reacting cobalt acetate with benzyl alcohol in the presence of ammonia under reflux conditions. The as-synthesized Co3O4 QDs show extraordinary water oxidation activity with onset overpotential as low as 398 mV and mass activity as high as 567 A/g (at 1.75 V vs RHE) in a 0.2 M phosphate buffer electrolyte (pH ∼7), which are among the most efficient Earth-abundant OER catalysts at neutral pH reported in the literature, reaching a stable current density of 10 mA/cm2 at an overpotential of ∼490 mV with a Tafel slope of 80 mV/decade. Through in-depth investigations by X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, the high spin Co2+ and Co3+ cations on the surface of Co3O4 QDs were found to be important to promote the OER kinetics at neutral pH. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.7b04812 |