Construction and Commissioning of a Continuous Reactor for Hydrothermal Liquefaction
The purpose of this paper is to give a comprehensive description of the construction and commissioning of a continuous reactor system for hydrothermal liquefaction of biomass. The basis is a newly established facility at Aarhus University. It is capable of handling viscous biomass slurries and featu...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2015-06, Vol.54 (22), p.5935-5947 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this paper is to give a comprehensive description of the construction and commissioning of a continuous reactor system for hydrothermal liquefaction of biomass. The basis is a newly established facility at Aarhus University. It is capable of handling viscous biomass slurries and features a novel induction-based heating method that facilitates well-defined reaction environments. Carbon balance closure is obtained as all product fractions are recovered and positively quantified. The paper includes a residence time distribution measurement and a 24 h proof-of-concept experiment conducted at 350 °C, 250 bar, and 15 min reaction time. It is based on the biomass dried distillers grains with solubles, a waste product of the bioethanol industry. The experiment seeks to determine the steady-state characteristics of the continuous reactor system for use in future experimental studies. It was found that steady state occurs within 6 h. Furthermore, data sampling windows of 2.1 h were found to mask the intrinsic variations of the system while still exposing trends. At steady state, the oil mass yield was found to be 38.9 ± 3.2% and the higher heating value was 35.3 ± 0.28 MJ kg–1. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.5b00683 |