Optimization of Separation Processes in Multiproduct Biorefinery Design to Produce Furan-Based Compounds and Their Derivatives Using Performance Indicators
The current dependence on fossil fuels to produce fuels and chemicals leads to resource depletion and environmental pollution. A promising alternative is to convert lignocellulosic biomass into high-value products through biorefineries, as biofuel production remains unprofitable. This study designs...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2024-11, Vol.63 (48), p.20950-20962 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The current dependence on fossil fuels to produce fuels and chemicals leads to resource depletion and environmental pollution. A promising alternative is to convert lignocellulosic biomass into high-value products through biorefineries, as biofuel production remains unprofitable. This study designs and optimizes a multiproduct biorefinery using corn stover, with sections for pretreatment, levulinic acid and γ-valerolactone production, and furfural and hydroxymethylfurfural production. Product flows are determined by sugar sent to each section and its direct impact on process performance. Three preset scenarios and one open search for optimal design were explored, all optimized with sustainability indicators. Scenario four was the optimum, producing primarily hydroxymethylfurfural with a total annual cost of 2.73 × 107 USD/year, an environmental impact of 5.62 × 106 points/year, and an energy requirement of 1.26 × 109 MJ/year. In this work was obtained the design of a biorefinery for producing all target compounds with optimal cost-effectiveness, minimal environmental impact, and low energy consumption. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.4c02646 |