Kinetic Modeling of a Poly(N‑vinylcaprolactam-co-glycidyl methacrylate) Microgel Synthesis: A Hybrid In Silico and Experimental Approach
Synthesizing microgels with new functionalities is vital for applications in various disciplines; yet microgel synthesis kinetics are mostly unknown. We present a bottom-up approach to model the synthesis of N-vinylcaprolactam-based microgels functionalized with glycidyl methacrylate. The existing s...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2023-01, Vol.62 (2), p.893-902 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synthesizing microgels with new functionalities is vital for applications in various disciplines; yet microgel synthesis kinetics are mostly unknown. We present a bottom-up approach to model the synthesis of N-vinylcaprolactam-based microgels functionalized with glycidyl methacrylate. The existing synthesis model requires parameter values for unknown reaction rates, which we estimate by a hybrid approach based on quantum chemical calculations and experimental data. Using quantum mechanics, we compute propagation rate constants and enthalpies of the underlying polymerization reactions. We estimate 7 out of 21 reaction parameter values using the reaction calorimetry measurements and a mechanistic process model. Our hybrid approach averages a coefficient of determination of 0.97 for the enthalpy transfer rate over time during microgel synthesis. Our approach illustrates that quantum chemistry methods and physical experiments can be integrated into models toward better understanding and designing of pVCL/GMA microgel synthesis processes. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.2c03291 |