Heat Transfer around and through Multiple Porous Particles

In this paper, numerical simulations have been performed to discuss the variations of temperature field and particle-average Nusselt number of nine porous particles based on the lattice Boltzmann method. Uniform and random spatial distribution were considered. For multiple porous particles, there is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2022-06, Vol.61 (23), p.8269-8278
Hauptverfasser: Jin, Hui, Zhang, Mingyue, Shen, Shaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, numerical simulations have been performed to discuss the variations of temperature field and particle-average Nusselt number of nine porous particles based on the lattice Boltzmann method. Uniform and random spatial distribution were considered. For multiple porous particles, there is heat transfer between fluid and front particles when fluid flow through the particles and therefore the fluid temperature rises which will suppress the heat transfer efficiency of the particles behind. As inter-particle distance increases, the suppression of the front particles decreases and therefore particle-average Nusselt number increases. However, the effects of the distance gradually decrease as distance increases. Besides, the distance change in the direction vertical to the inflow direction has more obvious influences on the temperature field and particle-average Nusselt number. Furthermore, Darcy number has two opposite influences on the heat transfer efficiency between the behind particles and fluid. For a specific random spatial distribution, the particle-average Nusselt number is in an increase with the increase of Darcy number which is similar to that for a uniform spatial distribution.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.2c00865