Heterogeneous Catalysts Containing an Anderson-Type Polyoxometalate for the Aerobic Oxidation of Sulfur-Containing Compounds

New highly efficient heterogeneous catalysts based on an immobilized Anderson-type polyoxometalate supported on the functionalized SBA-15 surface have been successfully synthesized and characterized by FT-IR, XRD, N2 adsorption–desorption isotherms, BET, SEM, TEM, EDX, and XPS analyses. The catalyti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2021-10, Vol.60 (39), p.14154-14165
Hauptverfasser: Eseva, Ekaterina A, Lukashov, Maksim O, Cherednichenko, Kirill A, Levin, Ivan S, Akopyan, Argam V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New highly efficient heterogeneous catalysts based on an immobilized Anderson-type polyoxometalate supported on the functionalized SBA-15 surface have been successfully synthesized and characterized by FT-IR, XRD, N2 adsorption–desorption isotherms, BET, SEM, TEM, EDX, and XPS analyses. The catalytic activity was investigated in the aerobic oxidative desulfurization of a model fuel. Heterogeneous catalysts were synthesized by various methods of immobilization using organic fragments of different natures. An efficient method of immobilization based on the grafting of N-methylimidazole as a cation-forming agent has been shown. The effect of temperature, dosage, and active phase loading on the conversion of dibenzothiophene (DBT) was studied. The highest activity was shown by the CoMo-0.5IL-SBA catalyst (IL = 1-methyl-3-(trimethoxysilylpropyl)-imidazolium cation), in the presence of which 100% DBT removal is achieved within 90 min at 120 °C at a catalyst amount of 0.2 wt %. Moreover, the immobilized catalyst could be recycled 5 times without a significant loss of catalytic activity.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.1c03201