Nanoporous Sponges as Carbon-Based Sorbents for Atmospheric Water Generation
Water scarcity threatens more and more people in the world. Moisture adsorption from the atmosphere represents a promising avenue to provide fresh water. Nanoporous sponges (“NPSs” ), new carbon-based sorbents synthesized from the pyrolysis of resorcinol-formaldehyde resin, can achieve comparable pe...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2021-09, Vol.60 (35), p.12923-12933 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Water scarcity threatens more and more people in the world. Moisture adsorption from the atmosphere represents a promising avenue to provide fresh water. Nanoporous sponges (“NPSs” ), new carbon-based sorbents synthesized from the pyrolysis of resorcinol-formaldehyde resin, can achieve comparable performance to metal organic framework-based systems, but at a significantly lower cost. Oxygen and nitrogen functionalities can be added to the NPS surface, through oxidation and addition of phenanthroline to the initial reagent mixture, respectively. The resulting NPS sorbents have high specific surface areas of 347 to 527 m2·g–1 and an average capillary-condensation-compatible pore size of 1.5 nm. When oxidized, the NPS can capture up to 0.28 g of water per gram of adsorbent at a relative pressure of 0.90 (0.14 g·g–1 at P/P sat = 0.40) and maintain this adsorption capacity over multiple adsorption/desorption cycles. Scaled-up synthesis of the NPS was performed and tested in an experimental water capture setup, showing good agreement between small- and larger-scale adsorption properties. Water adsorption isotherms fitted with the theoretical model proposed by Do and Do demonstrate that hydroxyl functionalities are of key importance to NPS behavior. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.1c02248 |