Hydrothermal Decomposition of Glucose in the Presence of Ammonium

The hydrothermal decomposition of glucose in the presence of ammonium is investigated under a subcritical water condition between 220 and 280 °C using a microtubular flow reactor at short residence times (0.5–2 s) to evaluate the evolution of primary and secondary products. The consumed ammonium is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2021-07, Vol.60 (28), p.10129-10138
Hauptverfasser: Kristianto, Ivan, Haynes, Brian S, Montoya, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hydrothermal decomposition of glucose in the presence of ammonium is investigated under a subcritical water condition between 220 and 280 °C using a microtubular flow reactor at short residence times (0.5–2 s) to evaluate the evolution of primary and secondary products. The consumed ammonium is mainly transformed into pyrazines, while other typical products of glucose such as fructose, glyceraldehyde, dihydroxyacetone, formic acid, acetic acid, 5-hydroxymethylfurfural (5-HMF), and furfural are also generated. For the first time, the effect of the reactant concentration, residence time, and reaction temperature on the formation of pyrazines is investigated. The kinetics of glucose decomposition was evaluated through a self-decomposition path and through interaction with ammonium, resulting in activation energies of 85.6 ± 6.7 and 97.4 ± 20.5 kJ mol–1, respectively.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.1c01686