Degradation Kinetics and Pathways of Isopropyl Alcohol by Microwave-Assisted Oxidation Process

Isopropyl alcohol (IPA) is a significant pollutant in the wastewater of semiconductor manufacturing industry. This study investigated the degradation of IPA in the microwave (MW)-assisted oxidation process using hydrogen peroxide (H2O2) as the oxidant. Complete elimination of IPA was noted in the MW...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2021-09, Vol.60 (34), p.12461-12473
Hauptverfasser: Tran, Quynh Thi Phuong, Chuang, Yi-Hsueh, Tan, Steve, Hsieh, Chi-Hsu, Yang, Tung-Yu, Tung, Hsin-hsin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isopropyl alcohol (IPA) is a significant pollutant in the wastewater of semiconductor manufacturing industry. This study investigated the degradation of IPA in the microwave (MW)-assisted oxidation process using hydrogen peroxide (H2O2) as the oxidant. Complete elimination of IPA was noted in the MW/H2O2 system within 90 min of irradiation. In comparison, only 4.8, 6.1, and 68.2% of IPA, respectively, was removed in MW irradiation alone, H2O2 oxidation, and the system using the combination of thermal (TH) and H2O2. The degradation kinetics of IPA followed the pseudo-first-order in MW/H2O2 and TH/H2O2 systems, whereas the pseudo-zero-order reaction kinetics was observed in others. The degradation rates increased on increasing the hydrogen peroxide dose to a certain level. An excess H2O2 would trap the hydroxyl radicals (•OH) to form weaker radicals that inhibit IPA oxidation. A series of degradation intermediates were identified and quantified corresponding to acetone and short-chain organic acids. Finally, the degradation pathways of IPA were proposed and validated by the total organic carbon mass balance.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.1c01464