Investigation of Contact Angles and Surface Morphology of 3D-Printed Materials

In the field of thermal separation technology, additive manufacturing has become increasingly important. 3D-printed components are often characterized by computational fluid dynamics simulations. Therefore, the knowledge of contact angles and surface properties are crucial. Materials used for 3D-pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2020-04, Vol.59 (14), p.6761-6766
Hauptverfasser: Neukäufer, Johannes, Seyfang, Bernhard, Grützner, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the field of thermal separation technology, additive manufacturing has become increasingly important. 3D-printed components are often characterized by computational fluid dynamics simulations. Therefore, the knowledge of contact angles and surface properties are crucial. Materials used for 3D-printed components have so far not been characterized with sufficient precision, which resulted in limited awareness about contact angles. Within this work, surface characterizations of printable materials consisting of stainless steel and polypropylen were performed using atomic force microscopy and contact angle measurements. The interactions of these solid materials with water were investigated. It is shown that the 3D-printing method and the component orientation during the printing process can have a significant influence on the interaction of solid material and liquid.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.0c00430