Toxicity of Graphene Oxide in Nematodes with a Deficit in the Epidermal Barrier Caused by RNA Interference Knockdown of unc-52
The epidermal barrier is important for the defense of environmental organisms against the damage from engineered nanomaterials (ENMs). We employed Caenorhabditis elegans to examine the possible influence of a deficit in the epidermal barrier caused by RNA interference (RNAi) knockdown of unc-52 enco...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology letters 2018-11, Vol.5 (11), p.622-628 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The epidermal barrier is important for the defense of environmental organisms against the damage from engineered nanomaterials (ENMs). We employed Caenorhabditis elegans to examine the possible influence of a deficit in the epidermal barrier caused by RNA interference (RNAi) knockdown of unc-52 encoding a perlecan protein on the toxicity of graphene oxide (GO). Epidermal RNAi knockdown of unc-52 caused a functional deficit in the epidermal barrier and susceptibility to GO toxicity. Epidermal knockdown of unc-52 decreased the level of expression of fbl-1 encoding a membrane protein fibulin and sax-7 encoding a cell adhesion receptor, and epidermal knockdown of fbl-1 or sax-7 also resulted in a functional deficit in the epidermal barrier and susceptibility to GO toxicity. Additionally, epidermal knockdown of unc-52 inhibited expression of cnc-2 and prx-11 encoding two antimicrobial proteins, and epidermal knockdown of cnc-2 or prx-11 could strengthen the GO toxicity in fbl-1(RNAi) or sax-7(RNAi) nematodes. Our data further highlight the important function of the epidermal barrier against toxicity of environmental ENMs. |
---|---|
ISSN: | 2328-8930 2328-8930 |
DOI: | 10.1021/acs.estlett.8b00473 |