Nanofoaming of Polyamide Desalination Membranes To Tune Permeability and Selectivity
Recent studies have documented the existence of discrete voids in the thin polyamide selective layer of composite reverse osmosis membranes. Here we present compelling evidence that these nanovoids are formed by nanosized gas bubbles generated during the interfacial polymerization process. Different...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology letters 2018-02, Vol.5 (2), p.123-130 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent studies have documented the existence of discrete voids in the thin polyamide selective layer of composite reverse osmosis membranes. Here we present compelling evidence that these nanovoids are formed by nanosized gas bubbles generated during the interfacial polymerization process. Different strategies were used to enhance or eliminate these nanobubbles in the thin polyamide film layer to tune its morphology and separation properties. Nanobubbles can endow the membrane with a foamed structure within the polyamide rejection layer that is approximately 100 nm in thickness. Simple nanofoaming methods, such as bicarbonate addition and ultrasound application, can result in a remarkable improvement in both membrane water permeability and salt rejection, thus overcoming the long-standing permeability–selectivity trade-off of desalination membranes. |
---|---|
ISSN: | 2328-8930 2328-8930 |
DOI: | 10.1021/acs.estlett.8b00016 |