Biogenic and Synthetic MnO 2 Nanoparticles: Size and Growth Probed with Absorption and Raman Spectroscopies and Dynamic Light Scattering

MnO nanoparticles, similar to those found in soils and sediments, have been characterized via their UV-visible and Raman spectra, combined with dynamic light scattering and reactivity measurements. Synthetic colloids were prepared by thiosulfate reduction of permanganate, their sizes controlled with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2019-04, Vol.53 (8), p.4185-4197
Hauptverfasser: Soldatova, Alexandra V, Balakrishnan, Gurusamy, Oyerinde, Oyeyemi F, Romano, Christine A, Tebo, Bradley M, Spiro, Thomas G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MnO nanoparticles, similar to those found in soils and sediments, have been characterized via their UV-visible and Raman spectra, combined with dynamic light scattering and reactivity measurements. Synthetic colloids were prepared by thiosulfate reduction of permanganate, their sizes controlled with adsorbates acting as capping agents: bicarbonate, phosphate, and pyrophosphate. Biogenic colloids, products of the manganese oxidase, Mnx, were similarly characterized. The band-gap energies of the colloids were found to increase with decreasing hydrodynamic diameter, D , and were proportional to 1/ D , as predicted from quantum confinement theory. The intensity ratio of the two prominent Mn-O stretching Raman bands also varied with particle size, consistent with the ratio of edge to bulk Mn atoms. Reactivity of the synthetic colloids toward reduction by Mn , in the presence of pyrophosphate to trap the Mn product, was proportional to the surface to volume ratio, but showed surprising complexity. There was also a remnant unreactive fraction, likely attributable to Mn(III)-induced surface passivation. The band gap was similar for biogenic and synthetic colloids of similar size, but decreased when the enzyme solution contained pyrophosphate, which traps the intermediate Mn(III) and slows MnO growth. The band gap/size correlation was used to analyze the growth of the enzymatically produced MnO oxides.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.8b05806