Interface-Enhanced Oxygen Vacancies of CoCuO x Catalysts In Situ Grown on Monolithic Cu Foam for VOC Catalytic Oxidation
The development of highly efficient and stable monolithic catalysts is essential for the removal of volatile organic compounds (VOCs). Copper foam (CF) is a potential ideal carrier for monolithic catalysts, but its low surface area is not conducive to dispersion of active species, thus reducing the...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2022-02, Vol.56 (3), p.1905-1916 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of highly efficient and stable monolithic catalysts is essential for the removal of volatile organic compounds (VOCs). Copper foam (CF) is a potential ideal carrier for monolithic catalysts, but its low surface area is not conducive to dispersion of active species, thus reducing the interface interaction with active species. Herein, a vertically oriented Cu(OH)2 nanorod was in situ grown on the CF, which acted as the template and precursor to synthesize CoCu-MOF. The optimized catalyst (12CoCu-R) delivers excellent performance for acetone oxidation with a T 90 of 195 °C. Impressively, the catalyst demonstrated satisfactory stability in long-term, cycle, water resistance, and high airspeed tests. Therefore, the present study provides a novel strategy for rationally designing efficient monolithic catalysts for VOC oxidation and other environmental applications. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.1c05855 |