Optimal Applications and Combinations of Renewable Fuel Production from Biomass and Electricity
As renewable electricity sources emerge, the conversion of electricity and CO2 to carbon-based fuels (e-fuels) arises as a complementary or competing option to biofuels. This work provides a systematic performance comparison of both bio- and e-fuel pathways to identify characteristic differences and...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2019-02, Vol.33 (2), p.1659-1672 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As renewable electricity sources emerge, the conversion of electricity and CO2 to carbon-based fuels (e-fuels) arises as a complementary or competing option to biofuels. This work provides a systematic performance comparison of both bio- and e-fuel pathways to identify characteristic differences and optimal applications of both production types. We construct a reaction network that features biochemical and thermochemical conversion of lignocellulosic biomass, transesterification of waste vegetable oil, and e-based routes (E-routes) using renewable H2. The network is optimized for economic and environmental criteria using two pathway screening tools, i.e., Reaction Network Flux Analysis and Process Network Flux Analysis. Furthermore, we apply a linear combination metric to analyze the advantages of bio-e-hybrid designs on a global fleet level. The results show that lignocellulosic-based fuels are relatively inexpensive but typically incur energy-intensive separations and high carbon losses. E-routes, on the contrary, result in only small carbon losses and global warming potentials as low as 5 g CO 2 , eq. MJ fuel . However, they come at high cost due to the use of expensive renewable H2. When combinations are considered, biomass can be utilized by upgrading it with e-based H2. In the case of bio-e-hybrid ethanol plants, co-fermentation of sugars and utilization of CO2 emitted during fermentation are identified as viable low-cost options for carbon loss reduction. These hybrid pathway designs outperform combinations of purely bio-based and purely e-based pathways at the fleet level. |
---|---|
ISSN: | 0887-0624 1520-5029 |
DOI: | 10.1021/acs.energyfuels.8b03790 |