Effects of Substitution on Counterflow Ignition and Extinction of C3 and C4 Alcohols

Dwindling reserves and inherent uncertainty in the price of conventional fuels necessitates a search for alternative fuels. Alcohols represent a potential source of energy for the future. The structural features of an alcohol fuel have a direct impact on combustion properties. In particular, substit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2016-07, Vol.30 (7), p.6091-6097
Hauptverfasser: Alfazazi, Adamu, Niemann, Ulrich, Selim, Hatem, Cattolica, Robert J, Sarathy, S. Mani
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dwindling reserves and inherent uncertainty in the price of conventional fuels necessitates a search for alternative fuels. Alcohols represent a potential source of energy for the future. The structural features of an alcohol fuel have a direct impact on combustion properties. In particular, substitution in alcohols can alter the global combustion reactivity. In this study, experiments and numerical simulations were conducted to investigate the critical conditions of extinction and autoignition of n-propanol, 1-butanol, iso-propanol, and iso-butanol in nonpremixed diffusion flames. Experiments were carried out in the counterflow configuration, while simulations were conducted using a skeletal chemical kinetic model for the C3 and C4 alcohols. The fuel stream consists of the prevaporized fuel diluted with nitrogen, while the oxidizer stream is air. The experimental results show that autoignition temperatures of the tested alcohols increase in the following order: iso-propanol > iso-butanol > 1-butanol ≈ n-propanol. The simulated results for the branched alcohols agree with the experiments, while the autoignition temperature of 1-butanol is slightly higher than that of n-propanol. For extinction, the experiments show that the extinction limits of the tested fuels increase in the following order: n-propanol ≈ 1-butanol > iso-butanol > iso-propanol. The model suggests that the extinction limits of 1-butanol are slightly higher than n-propanol with extinction strain rate of iso-butanol and iso-propanol maintaining the experimentally observed trend. The transport weighted enthalpy (TWE) and radical index (Ri) concepts were utilized to rationalize the observed reactivity trends for these fuels.
ISSN:0887-0624
1520-5029
DOI:10.1021/acs.energyfuels.6b00518