Characterization of Pyrolytic Sugars in Bio-Oil Produced from Biomass Fast Pyrolysis
This study characterizes the pyrolytic sugars in three bio-oils (with a total sugar content range of 55.6–69.2 mg g–1 bio-oil) produced from biomass fast pyrolysis by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and two-dimensional 1H–13C heteronuclea...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2016-05, Vol.30 (5), p.4145-4149 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study characterizes the pyrolytic sugars in three bio-oils (with a total sugar content range of 55.6–69.2 mg g–1 bio-oil) produced from biomass fast pyrolysis by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and two-dimensional 1H–13C heteronuclear single-quantum correlation–nuclear magnetic resonance (HSQC-NMR). Depending on bio-oil sample, glucose (mainly derived from cellulose) contributes ∼67–79 wt % of total pyrolytic sugars in the bio-oil, and the rest of the sugars are derived from hemicellulose. The majority (>96%) of pyrolytic sugars are present in the water-soluble fraction of bio-oil, mainly in the form of cellulose-derived anhydrosugars such as levoglucosan and cellobiosan. A small portion of hemicellulose-derived sugar structures are also found in the water-soluble fraction of bio-oil. Unlike six-carbon sugars (glucose, galactose, and mannose) which are mainly present as anhydrosugars (i.e., ∼ 79–86% on a carbon basis for glucose), a large portion of five-carbon sugars (xylose and arabinose) in the water-soluble fraction of bio-oil are present as monomer sugars (i.e., ∼ 24–39% on a carbon basis for arabinose and ∼32–42% on a carbon basis for xylose). The results suggest that the formation of anhydrosugars from hemicellulose pyrolysis is difficult for five-carbon sugars and the hydrolysis of hemicellulose can be catalyzed by the organic acids produced during pyrolysis. A minor portion ( |
---|---|
ISSN: | 0887-0624 1520-5029 |
DOI: | 10.1021/acs.energyfuels.6b00464 |