Molten-Salt-Assisted Fabrication of Defect-Rich 2D/3D Nitrogen-Doped Carbon with Embedded Co Nanoparticles for High-Performance Rechargeable Zn–Air Batteries with a High Open-Circuit Voltage

Porous transition metal-based nitrogen-doped carbon materials are considered promising bifunctional electrocatalysts for the oxygen reduction reaction/oxygen evolution reaction (ORR/OER) to improve the practical performance of rechargeable metal–air batteries. In this work, utilizing the sealing eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2024-10, Vol.38 (19), p.19107-19116
Hauptverfasser: Xi, Wenhao, Wang, Pan, Wu, Tongchen, Hou, Qianqian, Gao, Bifen, Chen, Yilin, Liu, Peide, Lin, Bizhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Porous transition metal-based nitrogen-doped carbon materials are considered promising bifunctional electrocatalysts for the oxygen reduction reaction/oxygen evolution reaction (ORR/OER) to improve the practical performance of rechargeable metal–air batteries. In this work, utilizing the sealing effect of a molten salt, defect-rich N-doped carbon supported embedded Co nanoparticles (NPs) with a unique two-dimensional/three-dimensional (2D/3D) cross-linked structure (Co@CLNC) was fabricated by a facile one-pot salt-assisted pyrolysis of a cobalt-based zeolite imidazole framework. Density functional theory (DFT) calculations revealed that the synergistic effect of Co NPs boosts the catalytic activity of Co–N x active sites through reducing the energy barriers of the rate-determining steps, the desorption of *OH for the ORR and the transformation of *OH to *O for the OER. The as-prepared Co@CLNC manifests a larger specific surface area and remarkable OER/ORR bifunctional electrocatalytic activity with a high ORR half-wave potential of 0.84 V. A homemade Zn–air battery using Co@CLNC as the air electrode catalyst demonstrates excellent performance with a high open-circuit voltage of 1.526 V, a peak power density of 166 mW cm–2, and a high energy efficiency of greater than 59.8%, with a low charging voltage of less than 2 V during the 600-cycle stability test.
ISSN:0887-0624
1520-5029
DOI:10.1021/acs.energyfuels.4c03578