Stretchable Superhydrophobic Supercapacitor with Excellent Self-Healing Ability

Flexible supercapacitors have attracted widespread attention due to the rapid development of wearable electronics. Nevertheless, most supercapacitors will degrade after being stretched and cannot work underwater. Here, a new kind of stretchable superhydrophobic supercapacitor was proposed. On the ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2023-04, Vol.37 (7), p.5567-5576
Hauptverfasser: Wang, Peng, Wang, Zinan, Zhang, Ximin, Liao, Yongli, Duan, Wei, Yue, Ying, Zhang, Yuning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flexible supercapacitors have attracted widespread attention due to the rapid development of wearable electronics. Nevertheless, most supercapacitors will degrade after being stretched and cannot work underwater. Here, a new kind of stretchable superhydrophobic supercapacitor was proposed. On the basis of the freeze–thaw treatment of PVA hydrogel, carrageenan and carbon nanotubes (CNTs) were further introduced to construct a triple network hydrogel that achieved self-healing, high elasticity, and stretchability simultaneously. Then, hydrophobic modified CNTs and NiO/CoO nanoparticles were sprayed onto the surface of the hydrogel to construct electrodes. The energy storage performance was improved by combining pseudocapacitive (CoO and NiO) and electric double-layer capacitive (MWCNT) behaviors. The superhydrophobic supercapacitor has excellent flexibility, self-healing, and self-cleaning properties. Furthermore, it can maintain superhydrophobic and good energy storage performance even after being stretched 400%, abraded 65 cycles, and cut 20 times. Owing to superhydrophobicity, this supercapacitor would have a bright application for underwater workings.
ISSN:0887-0624
1520-5029
DOI:10.1021/acs.energyfuels.3c00092