Solid-State Synthesis of Titanium-Doped Binary Strontium–Copper Oxide as a High-Performance Electrochemical Pseudocapacitive Electrode Nanomaterial
Ti-doped SrCu2O2 (TSCO) is prepared using a solid-state chemical reaction and applied as electrochemical pseudocapacitors. Different characterization techniques have been applied to confirm the crystallinity of the prepared TSCO, including an electrochemical test of the synthesized electrode materia...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2021-10, Vol.35 (20), p.16870-16881 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ti-doped SrCu2O2 (TSCO) is prepared using a solid-state chemical reaction and applied as electrochemical pseudocapacitors. Different characterization techniques have been applied to confirm the crystallinity of the prepared TSCO, including an electrochemical test of the synthesized electrode material; TSCO demonstrates specific capacities (C s) of ca. 1167.6 and 661.8 F/g at a 5 mV s–1 scan rate and 0.02 A/g applied current density, respectively, which is greater than those of the undopped SCO. The increment of the specific capacity value can be explained by the insertion of Ti as doped material in the SCO, which simultaneously intensifies the rate of ion intercalation/deintercalation at the time of charging/discharging (CD). Even the cycling establishment for the TSCO is found to be excellent, and there is only a 4.4% decrease after 10 000 CD cycles. Therefore, TSCO will be highly useful to prepare an electrode able to achieve an immense performance for super capacitance energy storage applications. |
---|---|
ISSN: | 0887-0624 1520-5029 |
DOI: | 10.1021/acs.energyfuels.1c01844 |