Quantification of Microcystin-LR in Human Urine by Immunocapture Liquid Chromatography Tandem Mass Spectrometry

Microcystins are toxins produced by many cyanobacteria species, which are often released into waterways during blue-green algal blooms in freshwater and marine habitats. The consumption of microcystin-contaminated water is a public health concern as these toxins are recognized tumor promoters and ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in toxicology 2018-09, Vol.31 (9), p.898-903
Hauptverfasser: Wharton, Rebekah E, Ojeda-Torres, Geovannie, Cunningham, Brady, Feyereisen, Melanie C, Hill, Kasey L, Abbott, Nicole L, Seymour, Craig, Hill, Donna, Lang, Johnsie, Hamelin, Elizabeth I, Johnson, Rudolph C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microcystins are toxins produced by many cyanobacteria species, which are often released into waterways during blue-green algal blooms in freshwater and marine habitats. The consumption of microcystin-contaminated water is a public health concern as these toxins are recognized tumor promoters and are hepatotoxic to humans and animals. A method to confirm human exposures to microcystins is needed; therefore, our laboratory has developed an immunocapture liquid chromatography tandem mass spectrometry (LC–MS/MS) method targeting the conserved adda portion of microcystins for the quantitation of a prevalent and highly toxic congener of microcystin, microcystin-LR (MC-LR). An acute exposure method was initially evaluated for accuracy and precision by analyzing calibrators and quality control (QC) samples ranging from 0.500 to 75.0 ng/mL in urine. All calibrators and QC samples characterized were within 15% of theoretical concentrations. An analysis of acutely exposed mouse urine samples using this method identified MC-LR levels from 10.7 to 33.9 ng/mL. Since human exposures are anticipated to result from low-dose or chronic exposures, a high-sensitivity method was validated with 20 calibration curves and QC samples ranging from 0.0100 to 7.50 ng/mL. Relative standard deviations (RSDs) and inaccuracies of these samples were within 15%, meeting United States Food and Drug Administration (FDA) guidelines for analytical methods, and the limit of detection was 0.00455 ng/mL. In conclusion, we have developed a method which can be used to address public health concerns by precisely and accurately measuring MC-LR in urine samples.
ISSN:0893-228X
1520-5010
DOI:10.1021/acs.chemrestox.8b00126