A Tough and Self-Powered Hydrogel for Artificial Skin

Hydrogels, because of their water-rich nature and soft mechanical characteristics that resemble those of skin tissues, are promising materials for artificial skin. Existing piezoresistive hydrogels combine unique tissue-like and sensory properties, but these materials are often plagued by problems s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2019-12, Vol.31 (23), p.9850-9860
Hauptverfasser: Fu, Rumin, Tu, Lingjie, Zhou, Yahong, Fan, Lei, Zhang, Fengmiao, Wang, Zhengao, Xing, Jun, Chen, Dafu, Deng, Chunlin, Tan, Guoxin, Yu, Peng, Zhou, Lei, Ning, Chengyun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9860
container_issue 23
container_start_page 9850
container_title Chemistry of materials
container_volume 31
creator Fu, Rumin
Tu, Lingjie
Zhou, Yahong
Fan, Lei
Zhang, Fengmiao
Wang, Zhengao
Xing, Jun
Chen, Dafu
Deng, Chunlin
Tan, Guoxin
Yu, Peng
Zhou, Lei
Ning, Chengyun
description Hydrogels, because of their water-rich nature and soft mechanical characteristics that resemble those of skin tissues, are promising materials for artificial skin. Existing piezoresistive hydrogels combine unique tissue-like and sensory properties, but these materials are often plagued by problems such as poor mechanical properties and the requirement of an external power supply or batteries. Here, a tough and self-powered hydrogel based on a tough polyacrylonitrile hydrogel incorporating ferroelectric poly­(vinylidene fluoride) (PAN-PVDF) is reported. The dipolar interactions between the PVDF and PAN chains cause an increase in the best electroactive β-phase PVDF percentage in the composites from 0 to 91.3%; thus, a maximum piezoelectric coefficient d 33, 30 pC N–1, was achieved for the hydrogels. Skin-like Young’s modulus values (1.33–4.24 MPa), stretchability (90–175%), and high toughness (1.23 MJ/m2) were achieved simultaneously for the hydrogels. This tough gel is capable of generating an electrical signal output (≈30 mV and ≈2.8 μA) with a rapid response (≈31 ms) due to the stress-induced poling effect. Moreover, the gel can also precisely detect physiological signals (e.g., gesture, pulse, and words). This study provides a simple and efficient method for artificial skin with high toughness, self-power generation capability, fast response, low cost, and tissue-like properties.
doi_str_mv 10.1021/acs.chemmater.9b04041
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_9b04041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a758182820</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-fc3674c90d602f53b6e8addedef53ee60964e47c0b70b321b7b539ee1c035c143</originalsourceid><addsrcrecordid>eNqFj9tKw0AURQdRsFY_QZgfmHgmc0nyGIpaoaDQ-hzmcqZNzUUmKdK_N6XFV58Om8Pa7EXII4eEQ8qfjBsSt8O2NSPGpLAgQfIrMuMqBaYA0msyg7zImMyUviV3w7AH4BOaz4gq6aY_bHfUdJ6usQnso__BiJ4ujz72W2xo6CMt41iH2tWmoeuvursnN8E0Az5c7px8vjxvFku2en99W5QrZoTmIwtO6Ey6AryGNChhNebGe_Q4BUQNhZYoMwc2AytSbjOrRIHIHQjluBRzos69LvbDEDFU37FuTTxWHKqTezW5V3_u1cV94viZO733_SF208p_mF-YIWEH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Tough and Self-Powered Hydrogel for Artificial Skin</title><source>ACS Publications</source><creator>Fu, Rumin ; Tu, Lingjie ; Zhou, Yahong ; Fan, Lei ; Zhang, Fengmiao ; Wang, Zhengao ; Xing, Jun ; Chen, Dafu ; Deng, Chunlin ; Tan, Guoxin ; Yu, Peng ; Zhou, Lei ; Ning, Chengyun</creator><creatorcontrib>Fu, Rumin ; Tu, Lingjie ; Zhou, Yahong ; Fan, Lei ; Zhang, Fengmiao ; Wang, Zhengao ; Xing, Jun ; Chen, Dafu ; Deng, Chunlin ; Tan, Guoxin ; Yu, Peng ; Zhou, Lei ; Ning, Chengyun</creatorcontrib><description>Hydrogels, because of their water-rich nature and soft mechanical characteristics that resemble those of skin tissues, are promising materials for artificial skin. Existing piezoresistive hydrogels combine unique tissue-like and sensory properties, but these materials are often plagued by problems such as poor mechanical properties and the requirement of an external power supply or batteries. Here, a tough and self-powered hydrogel based on a tough polyacrylonitrile hydrogel incorporating ferroelectric poly­(vinylidene fluoride) (PAN-PVDF) is reported. The dipolar interactions between the PVDF and PAN chains cause an increase in the best electroactive β-phase PVDF percentage in the composites from 0 to 91.3%; thus, a maximum piezoelectric coefficient d 33, 30 pC N–1, was achieved for the hydrogels. Skin-like Young’s modulus values (1.33–4.24 MPa), stretchability (90–175%), and high toughness (1.23 MJ/m2) were achieved simultaneously for the hydrogels. This tough gel is capable of generating an electrical signal output (≈30 mV and ≈2.8 μA) with a rapid response (≈31 ms) due to the stress-induced poling effect. Moreover, the gel can also precisely detect physiological signals (e.g., gesture, pulse, and words). This study provides a simple and efficient method for artificial skin with high toughness, self-power generation capability, fast response, low cost, and tissue-like properties.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b04041</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2019-12, Vol.31 (23), p.9850-9860</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-fc3674c90d602f53b6e8addedef53ee60964e47c0b70b321b7b539ee1c035c143</citedby><cites>FETCH-LOGICAL-a361t-fc3674c90d602f53b6e8addedef53ee60964e47c0b70b321b7b539ee1c035c143</cites><orcidid>0000-0001-8647-639X ; 0000-0003-3293-4716 ; 0000-0003-2431-6555 ; 0000-0002-2253-7373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b04041$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b04041$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Fu, Rumin</creatorcontrib><creatorcontrib>Tu, Lingjie</creatorcontrib><creatorcontrib>Zhou, Yahong</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Zhang, Fengmiao</creatorcontrib><creatorcontrib>Wang, Zhengao</creatorcontrib><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Chen, Dafu</creatorcontrib><creatorcontrib>Deng, Chunlin</creatorcontrib><creatorcontrib>Tan, Guoxin</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Ning, Chengyun</creatorcontrib><title>A Tough and Self-Powered Hydrogel for Artificial Skin</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Hydrogels, because of their water-rich nature and soft mechanical characteristics that resemble those of skin tissues, are promising materials for artificial skin. Existing piezoresistive hydrogels combine unique tissue-like and sensory properties, but these materials are often plagued by problems such as poor mechanical properties and the requirement of an external power supply or batteries. Here, a tough and self-powered hydrogel based on a tough polyacrylonitrile hydrogel incorporating ferroelectric poly­(vinylidene fluoride) (PAN-PVDF) is reported. The dipolar interactions between the PVDF and PAN chains cause an increase in the best electroactive β-phase PVDF percentage in the composites from 0 to 91.3%; thus, a maximum piezoelectric coefficient d 33, 30 pC N–1, was achieved for the hydrogels. Skin-like Young’s modulus values (1.33–4.24 MPa), stretchability (90–175%), and high toughness (1.23 MJ/m2) were achieved simultaneously for the hydrogels. This tough gel is capable of generating an electrical signal output (≈30 mV and ≈2.8 μA) with a rapid response (≈31 ms) due to the stress-induced poling effect. Moreover, the gel can also precisely detect physiological signals (e.g., gesture, pulse, and words). This study provides a simple and efficient method for artificial skin with high toughness, self-power generation capability, fast response, low cost, and tissue-like properties.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFj9tKw0AURQdRsFY_QZgfmHgmc0nyGIpaoaDQ-hzmcqZNzUUmKdK_N6XFV58Om8Pa7EXII4eEQ8qfjBsSt8O2NSPGpLAgQfIrMuMqBaYA0msyg7zImMyUviV3w7AH4BOaz4gq6aY_bHfUdJ6usQnso__BiJ4ujz72W2xo6CMt41iH2tWmoeuvursnN8E0Az5c7px8vjxvFku2en99W5QrZoTmIwtO6Ey6AryGNChhNebGe_Q4BUQNhZYoMwc2AytSbjOrRIHIHQjluBRzos69LvbDEDFU37FuTTxWHKqTezW5V3_u1cV94viZO733_SF208p_mF-YIWEH</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Fu, Rumin</creator><creator>Tu, Lingjie</creator><creator>Zhou, Yahong</creator><creator>Fan, Lei</creator><creator>Zhang, Fengmiao</creator><creator>Wang, Zhengao</creator><creator>Xing, Jun</creator><creator>Chen, Dafu</creator><creator>Deng, Chunlin</creator><creator>Tan, Guoxin</creator><creator>Yu, Peng</creator><creator>Zhou, Lei</creator><creator>Ning, Chengyun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8647-639X</orcidid><orcidid>https://orcid.org/0000-0003-3293-4716</orcidid><orcidid>https://orcid.org/0000-0003-2431-6555</orcidid><orcidid>https://orcid.org/0000-0002-2253-7373</orcidid></search><sort><creationdate>20191210</creationdate><title>A Tough and Self-Powered Hydrogel for Artificial Skin</title><author>Fu, Rumin ; Tu, Lingjie ; Zhou, Yahong ; Fan, Lei ; Zhang, Fengmiao ; Wang, Zhengao ; Xing, Jun ; Chen, Dafu ; Deng, Chunlin ; Tan, Guoxin ; Yu, Peng ; Zhou, Lei ; Ning, Chengyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-fc3674c90d602f53b6e8addedef53ee60964e47c0b70b321b7b539ee1c035c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Rumin</creatorcontrib><creatorcontrib>Tu, Lingjie</creatorcontrib><creatorcontrib>Zhou, Yahong</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Zhang, Fengmiao</creatorcontrib><creatorcontrib>Wang, Zhengao</creatorcontrib><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Chen, Dafu</creatorcontrib><creatorcontrib>Deng, Chunlin</creatorcontrib><creatorcontrib>Tan, Guoxin</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Ning, Chengyun</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Rumin</au><au>Tu, Lingjie</au><au>Zhou, Yahong</au><au>Fan, Lei</au><au>Zhang, Fengmiao</au><au>Wang, Zhengao</au><au>Xing, Jun</au><au>Chen, Dafu</au><au>Deng, Chunlin</au><au>Tan, Guoxin</au><au>Yu, Peng</au><au>Zhou, Lei</au><au>Ning, Chengyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Tough and Self-Powered Hydrogel for Artificial Skin</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>31</volume><issue>23</issue><spage>9850</spage><epage>9860</epage><pages>9850-9860</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Hydrogels, because of their water-rich nature and soft mechanical characteristics that resemble those of skin tissues, are promising materials for artificial skin. Existing piezoresistive hydrogels combine unique tissue-like and sensory properties, but these materials are often plagued by problems such as poor mechanical properties and the requirement of an external power supply or batteries. Here, a tough and self-powered hydrogel based on a tough polyacrylonitrile hydrogel incorporating ferroelectric poly­(vinylidene fluoride) (PAN-PVDF) is reported. The dipolar interactions between the PVDF and PAN chains cause an increase in the best electroactive β-phase PVDF percentage in the composites from 0 to 91.3%; thus, a maximum piezoelectric coefficient d 33, 30 pC N–1, was achieved for the hydrogels. Skin-like Young’s modulus values (1.33–4.24 MPa), stretchability (90–175%), and high toughness (1.23 MJ/m2) were achieved simultaneously for the hydrogels. This tough gel is capable of generating an electrical signal output (≈30 mV and ≈2.8 μA) with a rapid response (≈31 ms) due to the stress-induced poling effect. Moreover, the gel can also precisely detect physiological signals (e.g., gesture, pulse, and words). This study provides a simple and efficient method for artificial skin with high toughness, self-power generation capability, fast response, low cost, and tissue-like properties.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b04041</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8647-639X</orcidid><orcidid>https://orcid.org/0000-0003-3293-4716</orcidid><orcidid>https://orcid.org/0000-0003-2431-6555</orcidid><orcidid>https://orcid.org/0000-0002-2253-7373</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2019-12, Vol.31 (23), p.9850-9860
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_acs_chemmater_9b04041
source ACS Publications
title A Tough and Self-Powered Hydrogel for Artificial Skin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Tough%20and%20Self-Powered%20Hydrogel%20for%20Artificial%20Skin&rft.jtitle=Chemistry%20of%20materials&rft.au=Fu,%20Rumin&rft.date=2019-12-10&rft.volume=31&rft.issue=23&rft.spage=9850&rft.epage=9860&rft.pages=9850-9860&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b04041&rft_dat=%3Cacs_cross%3Ea758182820%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true