A Tough and Self-Powered Hydrogel for Artificial Skin
Hydrogels, because of their water-rich nature and soft mechanical characteristics that resemble those of skin tissues, are promising materials for artificial skin. Existing piezoresistive hydrogels combine unique tissue-like and sensory properties, but these materials are often plagued by problems s...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2019-12, Vol.31 (23), p.9850-9860 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9860 |
---|---|
container_issue | 23 |
container_start_page | 9850 |
container_title | Chemistry of materials |
container_volume | 31 |
creator | Fu, Rumin Tu, Lingjie Zhou, Yahong Fan, Lei Zhang, Fengmiao Wang, Zhengao Xing, Jun Chen, Dafu Deng, Chunlin Tan, Guoxin Yu, Peng Zhou, Lei Ning, Chengyun |
description | Hydrogels, because of their water-rich nature and soft mechanical characteristics that resemble those of skin tissues, are promising materials for artificial skin. Existing piezoresistive hydrogels combine unique tissue-like and sensory properties, but these materials are often plagued by problems such as poor mechanical properties and the requirement of an external power supply or batteries. Here, a tough and self-powered hydrogel based on a tough polyacrylonitrile hydrogel incorporating ferroelectric poly(vinylidene fluoride) (PAN-PVDF) is reported. The dipolar interactions between the PVDF and PAN chains cause an increase in the best electroactive β-phase PVDF percentage in the composites from 0 to 91.3%; thus, a maximum piezoelectric coefficient d 33, 30 pC N–1, was achieved for the hydrogels. Skin-like Young’s modulus values (1.33–4.24 MPa), stretchability (90–175%), and high toughness (1.23 MJ/m2) were achieved simultaneously for the hydrogels. This tough gel is capable of generating an electrical signal output (≈30 mV and ≈2.8 μA) with a rapid response (≈31 ms) due to the stress-induced poling effect. Moreover, the gel can also precisely detect physiological signals (e.g., gesture, pulse, and words). This study provides a simple and efficient method for artificial skin with high toughness, self-power generation capability, fast response, low cost, and tissue-like properties. |
doi_str_mv | 10.1021/acs.chemmater.9b04041 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_chemmater_9b04041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a758182820</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-fc3674c90d602f53b6e8addedef53ee60964e47c0b70b321b7b539ee1c035c143</originalsourceid><addsrcrecordid>eNqFj9tKw0AURQdRsFY_QZgfmHgmc0nyGIpaoaDQ-hzmcqZNzUUmKdK_N6XFV58Om8Pa7EXII4eEQ8qfjBsSt8O2NSPGpLAgQfIrMuMqBaYA0msyg7zImMyUviV3w7AH4BOaz4gq6aY_bHfUdJ6usQnso__BiJ4ujz72W2xo6CMt41iH2tWmoeuvursnN8E0Az5c7px8vjxvFku2en99W5QrZoTmIwtO6Ey6AryGNChhNebGe_Q4BUQNhZYoMwc2AytSbjOrRIHIHQjluBRzos69LvbDEDFU37FuTTxWHKqTezW5V3_u1cV94viZO733_SF208p_mF-YIWEH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Tough and Self-Powered Hydrogel for Artificial Skin</title><source>ACS Publications</source><creator>Fu, Rumin ; Tu, Lingjie ; Zhou, Yahong ; Fan, Lei ; Zhang, Fengmiao ; Wang, Zhengao ; Xing, Jun ; Chen, Dafu ; Deng, Chunlin ; Tan, Guoxin ; Yu, Peng ; Zhou, Lei ; Ning, Chengyun</creator><creatorcontrib>Fu, Rumin ; Tu, Lingjie ; Zhou, Yahong ; Fan, Lei ; Zhang, Fengmiao ; Wang, Zhengao ; Xing, Jun ; Chen, Dafu ; Deng, Chunlin ; Tan, Guoxin ; Yu, Peng ; Zhou, Lei ; Ning, Chengyun</creatorcontrib><description>Hydrogels, because of their water-rich nature and soft mechanical characteristics that resemble those of skin tissues, are promising materials for artificial skin. Existing piezoresistive hydrogels combine unique tissue-like and sensory properties, but these materials are often plagued by problems such as poor mechanical properties and the requirement of an external power supply or batteries. Here, a tough and self-powered hydrogel based on a tough polyacrylonitrile hydrogel incorporating ferroelectric poly(vinylidene fluoride) (PAN-PVDF) is reported. The dipolar interactions between the PVDF and PAN chains cause an increase in the best electroactive β-phase PVDF percentage in the composites from 0 to 91.3%; thus, a maximum piezoelectric coefficient d 33, 30 pC N–1, was achieved for the hydrogels. Skin-like Young’s modulus values (1.33–4.24 MPa), stretchability (90–175%), and high toughness (1.23 MJ/m2) were achieved simultaneously for the hydrogels. This tough gel is capable of generating an electrical signal output (≈30 mV and ≈2.8 μA) with a rapid response (≈31 ms) due to the stress-induced poling effect. Moreover, the gel can also precisely detect physiological signals (e.g., gesture, pulse, and words). This study provides a simple and efficient method for artificial skin with high toughness, self-power generation capability, fast response, low cost, and tissue-like properties.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b04041</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2019-12, Vol.31 (23), p.9850-9860</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-fc3674c90d602f53b6e8addedef53ee60964e47c0b70b321b7b539ee1c035c143</citedby><cites>FETCH-LOGICAL-a361t-fc3674c90d602f53b6e8addedef53ee60964e47c0b70b321b7b539ee1c035c143</cites><orcidid>0000-0001-8647-639X ; 0000-0003-3293-4716 ; 0000-0003-2431-6555 ; 0000-0002-2253-7373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b04041$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b04041$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Fu, Rumin</creatorcontrib><creatorcontrib>Tu, Lingjie</creatorcontrib><creatorcontrib>Zhou, Yahong</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Zhang, Fengmiao</creatorcontrib><creatorcontrib>Wang, Zhengao</creatorcontrib><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Chen, Dafu</creatorcontrib><creatorcontrib>Deng, Chunlin</creatorcontrib><creatorcontrib>Tan, Guoxin</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Ning, Chengyun</creatorcontrib><title>A Tough and Self-Powered Hydrogel for Artificial Skin</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Hydrogels, because of their water-rich nature and soft mechanical characteristics that resemble those of skin tissues, are promising materials for artificial skin. Existing piezoresistive hydrogels combine unique tissue-like and sensory properties, but these materials are often plagued by problems such as poor mechanical properties and the requirement of an external power supply or batteries. Here, a tough and self-powered hydrogel based on a tough polyacrylonitrile hydrogel incorporating ferroelectric poly(vinylidene fluoride) (PAN-PVDF) is reported. The dipolar interactions between the PVDF and PAN chains cause an increase in the best electroactive β-phase PVDF percentage in the composites from 0 to 91.3%; thus, a maximum piezoelectric coefficient d 33, 30 pC N–1, was achieved for the hydrogels. Skin-like Young’s modulus values (1.33–4.24 MPa), stretchability (90–175%), and high toughness (1.23 MJ/m2) were achieved simultaneously for the hydrogels. This tough gel is capable of generating an electrical signal output (≈30 mV and ≈2.8 μA) with a rapid response (≈31 ms) due to the stress-induced poling effect. Moreover, the gel can also precisely detect physiological signals (e.g., gesture, pulse, and words). This study provides a simple and efficient method for artificial skin with high toughness, self-power generation capability, fast response, low cost, and tissue-like properties.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFj9tKw0AURQdRsFY_QZgfmHgmc0nyGIpaoaDQ-hzmcqZNzUUmKdK_N6XFV58Om8Pa7EXII4eEQ8qfjBsSt8O2NSPGpLAgQfIrMuMqBaYA0msyg7zImMyUviV3w7AH4BOaz4gq6aY_bHfUdJ6usQnso__BiJ4ujz72W2xo6CMt41iH2tWmoeuvursnN8E0Az5c7px8vjxvFku2en99W5QrZoTmIwtO6Ey6AryGNChhNebGe_Q4BUQNhZYoMwc2AytSbjOrRIHIHQjluBRzos69LvbDEDFU37FuTTxWHKqTezW5V3_u1cV94viZO733_SF208p_mF-YIWEH</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Fu, Rumin</creator><creator>Tu, Lingjie</creator><creator>Zhou, Yahong</creator><creator>Fan, Lei</creator><creator>Zhang, Fengmiao</creator><creator>Wang, Zhengao</creator><creator>Xing, Jun</creator><creator>Chen, Dafu</creator><creator>Deng, Chunlin</creator><creator>Tan, Guoxin</creator><creator>Yu, Peng</creator><creator>Zhou, Lei</creator><creator>Ning, Chengyun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8647-639X</orcidid><orcidid>https://orcid.org/0000-0003-3293-4716</orcidid><orcidid>https://orcid.org/0000-0003-2431-6555</orcidid><orcidid>https://orcid.org/0000-0002-2253-7373</orcidid></search><sort><creationdate>20191210</creationdate><title>A Tough and Self-Powered Hydrogel for Artificial Skin</title><author>Fu, Rumin ; Tu, Lingjie ; Zhou, Yahong ; Fan, Lei ; Zhang, Fengmiao ; Wang, Zhengao ; Xing, Jun ; Chen, Dafu ; Deng, Chunlin ; Tan, Guoxin ; Yu, Peng ; Zhou, Lei ; Ning, Chengyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-fc3674c90d602f53b6e8addedef53ee60964e47c0b70b321b7b539ee1c035c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Rumin</creatorcontrib><creatorcontrib>Tu, Lingjie</creatorcontrib><creatorcontrib>Zhou, Yahong</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Zhang, Fengmiao</creatorcontrib><creatorcontrib>Wang, Zhengao</creatorcontrib><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Chen, Dafu</creatorcontrib><creatorcontrib>Deng, Chunlin</creatorcontrib><creatorcontrib>Tan, Guoxin</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Ning, Chengyun</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Rumin</au><au>Tu, Lingjie</au><au>Zhou, Yahong</au><au>Fan, Lei</au><au>Zhang, Fengmiao</au><au>Wang, Zhengao</au><au>Xing, Jun</au><au>Chen, Dafu</au><au>Deng, Chunlin</au><au>Tan, Guoxin</au><au>Yu, Peng</au><au>Zhou, Lei</au><au>Ning, Chengyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Tough and Self-Powered Hydrogel for Artificial Skin</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>31</volume><issue>23</issue><spage>9850</spage><epage>9860</epage><pages>9850-9860</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Hydrogels, because of their water-rich nature and soft mechanical characteristics that resemble those of skin tissues, are promising materials for artificial skin. Existing piezoresistive hydrogels combine unique tissue-like and sensory properties, but these materials are often plagued by problems such as poor mechanical properties and the requirement of an external power supply or batteries. Here, a tough and self-powered hydrogel based on a tough polyacrylonitrile hydrogel incorporating ferroelectric poly(vinylidene fluoride) (PAN-PVDF) is reported. The dipolar interactions between the PVDF and PAN chains cause an increase in the best electroactive β-phase PVDF percentage in the composites from 0 to 91.3%; thus, a maximum piezoelectric coefficient d 33, 30 pC N–1, was achieved for the hydrogels. Skin-like Young’s modulus values (1.33–4.24 MPa), stretchability (90–175%), and high toughness (1.23 MJ/m2) were achieved simultaneously for the hydrogels. This tough gel is capable of generating an electrical signal output (≈30 mV and ≈2.8 μA) with a rapid response (≈31 ms) due to the stress-induced poling effect. Moreover, the gel can also precisely detect physiological signals (e.g., gesture, pulse, and words). This study provides a simple and efficient method for artificial skin with high toughness, self-power generation capability, fast response, low cost, and tissue-like properties.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b04041</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8647-639X</orcidid><orcidid>https://orcid.org/0000-0003-3293-4716</orcidid><orcidid>https://orcid.org/0000-0003-2431-6555</orcidid><orcidid>https://orcid.org/0000-0002-2253-7373</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2019-12, Vol.31 (23), p.9850-9860 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_chemmater_9b04041 |
source | ACS Publications |
title | A Tough and Self-Powered Hydrogel for Artificial Skin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Tough%20and%20Self-Powered%20Hydrogel%20for%20Artificial%20Skin&rft.jtitle=Chemistry%20of%20materials&rft.au=Fu,%20Rumin&rft.date=2019-12-10&rft.volume=31&rft.issue=23&rft.spage=9850&rft.epage=9860&rft.pages=9850-9860&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b04041&rft_dat=%3Cacs_cross%3Ea758182820%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |