Low-Temperature Steam Annealing of Metal Oxide Thin Films from Aqueous Precursors: Enhanced Counterion Removal, Resistance to Water Absorption, and Dielectric Constant
Aqueous solution deposition has emerged as a potentially scalable, high-throughput route to functional metal oxide thin films. Aqueous routes, however, generally require elevated processing temperatures to produce fully condensed films that are resistant to water absorption. Herein, we report a low-...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2017-10, Vol.29 (19), p.8531-8538 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aqueous solution deposition has emerged as a potentially scalable, high-throughput route to functional metal oxide thin films. Aqueous routes, however, generally require elevated processing temperatures to produce fully condensed films that are resistant to water absorption. Herein, we report a low-processing-temperature method for preparing more fully condensed, stable metal oxide films from aqueous precursors. We show that a steam anneal at ≤200 °C reduces residual nitrates in zinc oxide, yttrium aluminum oxide, and lanthanum zirconium oxide (LZO) films. An in-depth study on LZO dielectric films reveals steam annealing also reduces residual chloride content, increases resistance to post-anneal water absorption, eliminates void formation, and enhances the dielectric constant. This investigation demonstrates that steam annealing directly affects the decomposition temperatures and chemical evolution of aqueous precursors, suggesting a general means for producing high-quality films at low processing temperatures. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.7b03585 |