Growth of Large Single-Crystalline Monolayer Hexagonal Boron Nitride by Oxide-Assisted Chemical Vapor Deposition
We show how an oxide passivating layer on the Cu surface before the growth of h-BN by chemical vapor deposition (CVD) can lead to increased domain sizes from 1 to 20 μm by reducing the nucleation density from 106 to 103 mm–2. The h-BN domains within each Cu grain are well-oriented, indicating an epi...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2017-08, Vol.29 (15), p.6252-6260 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show how an oxide passivating layer on the Cu surface before the growth of h-BN by chemical vapor deposition (CVD) can lead to increased domain sizes from 1 to 20 μm by reducing the nucleation density from 106 to 103 mm–2. The h-BN domains within each Cu grain are well-oriented, indicating an epitaxial relationship between the h-BN crystals and the Cu growth substrates that leads to larger crystal domains within the film of ∼100 μm. Continuous films are grown and show a high degree of monolayer uniformity. This CVD approach removes the need for low pressures, electrochemical polishing, and expensive substrates for large-area continuous films of h-BN monolayers, which is beneficial for industrial applications that require scalable synthesis. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.7b01285 |