Boranephosphonate DNA-Mediated Metallization of Single-Walled Carbon Nanotubes

Single-walled carbon nanotubes (SWNTs), when dispersed in DMSO with boranephosphonate DNA (bpDNA), were efficiently metalized with silver, gold, and palladium nanoparticles (NPs). This was possible by first adsorbing boranephosphonate DNA onto the surface of SWNTs and then bathing with silver, gold,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2017-03, Vol.29 (5), p.2239-2245
Hauptverfasser: Ganguly, Saheli, Paul, Sibasish, Yehezkeli, Omer, Cha, Jennifer, Caruthers, Marvin H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-walled carbon nanotubes (SWNTs), when dispersed in DMSO with boranephosphonate DNA (bpDNA), were efficiently metalized with silver, gold, and palladium nanoparticles (NPs). This was possible by first adsorbing boranephosphonate DNA onto the surface of SWNTs and then bathing with silver, gold, and palladium metal salts, which form the corresponding nanoparticles by reduction of their respective ions without addition of any external reducing agent. Reduction of a redox dye, 2,6-dichlorophenolindophenol (DCPIP), by Pd nanoparticle conjugates (PdNP/bpDNA/SWNT) disclosed the efficient electron transfer properties of these metallized SWNTs. These PdNP/bpDNA/SWNT conjugates were also successfully used to catalyze Heck and Suzuki coupling reactions. Boranephosphonate DNA-mediated metallization of SWNTs therefore provides a new method for fabricating well-defined SWNT-based nanostructures. This discovery should reveal unexpected applications in various research areas ranging from nanoelectronic devices to nanoscale SWNT supported multimetallic catalysts having different compositions.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.6b05182