Managing Redox Chemistry To Deter Marine Biological Adhesion

With global shipping accounting for 3.5% of annual fossil fuel use, we have incentive to keep hulls clean from encrusting foulers including barnacles, oysters, and mussels. Current antifouling coatings function by releasing biocidal copper into the surrounding waters. Rather than poisoning the ocean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2016-09, Vol.28 (18), p.6791-6796
Hauptverfasser: Del Grosso, Chelsey A, McCarthy, Thomas W, Clark, Christopher L, Cloud, Joshua L, Wilker, Jonathan J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With global shipping accounting for 3.5% of annual fossil fuel use, we have incentive to keep hulls clean from encrusting foulers including barnacles, oysters, and mussels. Current antifouling coatings function by releasing biocidal copper into the surrounding waters. Rather than poisoning the oceans, environmentally benign approaches to defeating biological adhesion are in great demand. Recent chemical characterization insights have found that oxidative cross-linking of proteins plays a potentially key role in the formation of several bioadhesives. Here, antioxidant compounds were placed into coatings in order to quench oxidative chemistry and inhibit glue formation. Antioxidant-containing surfaces decreased mussel adhesion relative to controls. Attacking the mechanisms of biological adhesion may provide us with a new strategy for foul release coatings and minimize the environmental impacts of shipping.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.6b03390