Bimetal Doping in Nanoclusters: Synergistic or Counteractive?

Doped nanoparticles (especially bimetal doped nanoparticles) have attracted extensive interest not only for fundamental scientific research but also for application purposes. However, their indefinite composition (structure) and broad distribution hinder an insightful understanding of the interactio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2016-11, Vol.28 (22), p.8240-8247
Hauptverfasser: Yan, Nan, Liao, Lingwen, Yuan, Jinyun, Lin, Yue-jian, Weng, Lin-hong, Yang, Jinlong, Wu, Zhikun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Doped nanoparticles (especially bimetal doped nanoparticles) have attracted extensive interest not only for fundamental scientific research but also for application purposes. However, their indefinite composition (structure) and broad distribution hinder an insightful understanding of the interaction between these invasive metals in bimetal doped nanoparticles. Fortunately, atom-precise bimetal doped ultrasmall nanoparticles (nanoclusters) provide opportunities to obtain such insights. However, atom-precise trimetal nanoclusters and their structures have rarely been reported. Here, we successfully dope thiolated Au25 nanoclusters with Hg and Ag successively by using a biantigalvanic reduction method. We then fully characterize the as-obtained trimetal nanoclusters using multiple techniques (including single-crystal X-ray crystallography), and we demonstrate that the mercury and silver dopings exhibit not only a synergistic but also a counteractive influence on some of the physicochemical properties of Au25.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.6b03132