Dual Sensitization Strategy for High-Performance Core/Shell/Quasi-shell Quantum Dot Solar Cells
The potential of quantum-dot sensitized solar cells (QDSCs), a promising candidate for third-generation photovoltaics, has not been fully realized with the corresponding power conversion efficiencies (PCE) still hovering below 9%. In this context, we demonstrate an optimized dual sensitization strat...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2015-07, Vol.27 (13), p.4848-4859 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The potential of quantum-dot sensitized solar cells (QDSCs), a promising candidate for third-generation photovoltaics, has not been fully realized with the corresponding power conversion efficiencies (PCE) still hovering below 9%. In this context, we demonstrate an optimized dual sensitization strategy that combines the linker-assisted self-assembly of QDs and successive ionic layer adsorption and reaction (SILAR) approach to assemble high-efficiency QDSCs. CdTe/CdS core/shell QDSC is chosen as the model system whose PCE, so far, has been reported at ∼3.8%. Our dual sensitization strategy comprises self-assembly of Type-II CdTe/CdS core/shell QDs on porous TiO2 followed by deposition of an additional CdS quasi-shell through SILAR. The highest QD surface coverage was optimized by systematic pH variation, whereby PCE improved from 2.04(1)% (pH 11) to 3.696(5)% (pH 13). It was observed that while the epitaxial shell passivates the core surface traps, the nonepitaxial quasi-shell passivates the TiO2 surface states. Thus, for core/shell, core/quasi-shell and core/shell/quasi-shell sensitized devices, PCE increased as 1.5(1)%, 3.6(4)%, and 5.69(2)%, respectively. The thickness of CdS shell and quasi-shell were optimized to achieve the PCE of CdTe/CdS/CdS core/shell/quasi-shell QDSCs as high as 6.32(9)% (6.41% for the champion cell), which notably is the highest for any aqueous processed QDSC. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.5b01731 |