Allrounder Strategy for Photopatterning Silver Nanowire Network Electrodes

Despite their high optical transparency and electrical conductivity, the commercialization of silver nanowire materials as transparent electrodes is challenging owing to the lack of a scalable micropatterning process. This paper proposes a versatile method for photopatterning silver nanowire network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2023-01, Vol.35 (1), p.71-80
Hauptverfasser: Kwak, In Cheol, Cho, Wan Ho, Kwon, Tae Hyun, Kim, Min Je, Lee, Jong Ik, Roe, Dong Gue, Ho, Dong Hae, Jo, Sae Byeok, Kang, Moon Sung, Kim, BongSoo, Cho, Jeong Ho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite their high optical transparency and electrical conductivity, the commercialization of silver nanowire materials as transparent electrodes is challenging owing to the lack of a scalable micropatterning process. This paper proposes a versatile method for photopatterning silver nanowire networks, based on photoinduced nanowire–nanowire and nanowire–substrate cross-linking. Because the proposed method requires only a small loading of the photocross-linking agent, the intrinsic physical characteristics of the silver nanowire network can be preserved. Furthermore, through the roughness-assisted wetting phenomenon, the resulting patterns can be selectively hybridized to form bilayered nanowire/conducting polymer electrodes. The resulting hybrid transparent electrodes exhibit a low roughness, excellent tolerance to oxidation or electrochemical processes, and mechanical stability against bending without compromising the excellent optical/electrical characteristics achievable from the pristine silver nanowire network. These benefits are integrated to assemble an active-matrix-driven electrochromic display. The proposed method can thus facilitate the practical application of silver nanowire network based transparent electrodes.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.2c02513