Advancing Near-Infrared Phosphorescence with Heteroleptic Iridium Complexes Bearing a Single Emitting Ligand: Properties and Organic Light-Emitting Diode Applications

Cyclometalated iridium complexes, emitters of choice in organic light-emitting diodes (OLEDs), hold great potential for near-infrared (NIR) applications. Upon increasing the conjugation size and chemical complexity of the ligands, as required to push the emission toward the NIR), overall high-molecu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2022-01, Vol.34 (2), p.574-583
Hauptverfasser: Penconi, Marta, Kajjam, Aravind Babu, Jung, Moon-Chul, Cazzaniga, Marco, Baldoli, Clara, Ceresoli, Davide, Thompson, Mark E, Bossi, Alberto
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cyclometalated iridium complexes, emitters of choice in organic light-emitting diodes (OLEDs), hold great potential for near-infrared (NIR) applications. Upon increasing the conjugation size and chemical complexity of the ligands, as required to push the emission toward the NIR), overall high-molecular-weight complexes (both homoleptic and heteroleptic β-diketonate ones) are obtained, posing related issues in OLED processing. One, so far barely explored, question arises: “Why endow Ir­(III) with three or two emissive ligands when one might work just as well?” Herein, as proof of concept for OLED technology, we disclose three novel deep-red to NIR emitters of formula Ir­(C^N)2(iqbt), with a single iqbt (1-(benzo­[b]­thiophen-2-yl)-isoquinolinate) ligand responsible for the emission in the NIR range. (C^N) are cyclometalated ligands with higher triplet energy than that of iqbt. We demonstrate that the presence of a single iqbt ligand is sufficient to enable efficient phosphorescence matching that of homoleptic Ir­(iqbt)3; moreover, the Ir­(C^N)2(iqbt) based OLEDs display efficiency exceeding the one of Ir­(iqbt)3. These compounds offer several important benefits: (i) advantageous synthetic protocols limiting to the last step of the use of novel and synthetic costly NIR ligands (implying a lower amount of ligand required), (ii) commercially available (C^N) to prepare the starting Ir chloro-dimers, and (iii) lower molecular weight of the complexes compared to that of the homoleptic parent ones fruitful for easier vacuum thermal processing of the emitters.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.1c03030