Role of Dopants in Organic and Halide Perovskite Energy Conversion Devices
Doping serves as a vital strategy for tuning electronic and optoelectronic properties of semiconductors. Compared to organic semiconductors, the understanding and optimization of the doping process in halide perovskite semiconductors is still in its infancy. Nonetheless, there is a continuous surge...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2021-11, Vol.33 (21), p.8147-8172 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Doping serves as a vital strategy for tuning electronic and optoelectronic properties of semiconductors. Compared to organic semiconductors, the understanding and optimization of the doping process in halide perovskite semiconductors is still in its infancy. Nonetheless, there is a continuous surge in doping these semiconductors for performance enhancement. This perspective discusses the central role of dopants in organic and halide perovskite-based semiconductors used for energy conversion devices, particularly solar cells and thermoelectrics. We summarize various p- and n-type dopants explored for modifying the active layer in organic and perovskite devices, highlighting their challenges and limitations. Understanding doping-induced changes in electronic properties and their ramifications on device performance is essential for improving the device performance. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.1c01867 |