ZIF‑8 Metal–Organic Framework Electrochemical Biosensor for the Detection of Protein–Protein Interaction

In this study, a novel label-free electrochemical biosensor based on the zeolitic imidazole framework (ZIF-8) was developed for monitoring protein–protein interactions (PPIs). ZIF-8 was deposited on interdigitated electrodes and employed as a transducing material and simultaneously carried the thior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2021-02, Vol.33 (4), p.1293-1306
Hauptverfasser: Trino, Luciana D, Albano, Luiz G. S, Granato, Daniela C, Santana, Aline G, de Camargo, Davi H. S, Correa, Catia C, Bof Bufon, Carlos C, Paes Leme, Adriana F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a novel label-free electrochemical biosensor based on the zeolitic imidazole framework (ZIF-8) was developed for monitoring protein–protein interactions (PPIs). ZIF-8 was deposited on interdigitated electrodes and employed as a transducing material and simultaneously carried the thioredoxin-1 (Trx-1) protein, followed by the deposition of increased concentrations of the cytoplasmic domain of a disintegrin and metalloproteinase 17 (ADAM17cyto) known as the Trx-1 binding partner. Structural and morphological characterizations were used to validate and verify the formation of ZIF-8. The ZIF-8 crystals showed a rhombic dodecahedral structure with mainly exposed (011) facets, a mean particle size of 205 (±22) nm, and a ZIF-8 film thickness around 61 (±6) nm. The interaction between Trx-1 and ADAM17cyto proteins was analyzed through electrochemical impedance spectroscopy (EIS). The results indicate a linear and inverse relationship between the impedance responses at 0.1 Hz for ADAM17cyto concentrations from 50 nM to 8 μM, with a coefficient of variation from 1.0% to 11.4%. The proposed biosensor also displayed a significant selectivity and stability verified by using ADAM17cyto mutant and BSA as controls. As a proof-of-concept, we compared the results with a widely used type of PPI assay based on antibody recognition, the solid-phase binding assay, using the same proteins. The solid-phase binding assay was able to detect a significant binding only in ADAM17cyto concentrations above 0.5 μM, with a coefficient of variation varying from 5.4% to 27.5%. The results demonstrate that the developed biosensor was 10× more sensitive and reproducible than the conventional solid-phase binding assay. Furthermore, the developed electrochemical biosensor based on ZIF-8 provides a faster, label-free, and low-cost detection analysis, representing a novel strategy in detecting PPIs.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.0c04201