Quantitative Analysis of Nanoscale Step Dynamics in High-Temperature Solution-Grown Single Crystal 4H-SiC via In Situ Confocal Laser Scanning Microscope
Nanoscale understanding of high-temperature crystal growth dynamics in solution has been a challenge to be tackled by many researchers engaged in investigating solution processes for bulk single crystal growth. Here we propose a new approach to in situ observation at a buried solid/liquid interface...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2017-05, Vol.17 (5), p.2844-2851 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanoscale understanding of high-temperature crystal growth dynamics in solution has been a challenge to be tackled by many researchers engaged in investigating solution processes for bulk single crystal growth. Here we propose a new approach to in situ observation at a buried solid/liquid interface in high-temperature solution using a conventional confocal laser scanning microscope. In the solution growth of 4H-SiC with Si–Ni based alloy flux as a model system, we show the ability to quantitatively analyze step motions at the growing SiC crystal on the nanoscale at high temperatures up to 1700 °C in a vacuum. The temperature-dependent step-advance rates for various steps with different step heights demonstrated the advantageous effect of adding Al to the flux on the step-flow growth of SiC: addition of just 4 at% Al effectively suppressed step-bunching. These experiments point to the importance of in situ nanoscale observation in understanding solution growth mechanisms, and hence the potential to accelerate the development of solution growth processes for high-quality bulk single crystals. |
---|---|
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/acs.cgd.7b00325 |