Direct Visualization of Quasi-Liquid Layers on Ice Crystal Surfaces Induced by Hydrogen Chloride Gas
Surface melting of ice crystals forms quasi-liquid layers (QLLs) on ice surfaces, and affects a wide variety of natural phenomena. Since QLLs enhance various chemical reactions in ice clouds, the formation of QLLs by atmospheric gases has been studied intensively. However, such studies were performe...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2016-04, Vol.16 (4), p.2225-2230 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface melting of ice crystals forms quasi-liquid layers (QLLs) on ice surfaces, and affects a wide variety of natural phenomena. Since QLLs enhance various chemical reactions in ice clouds, the formation of QLLs by atmospheric gases has been studied intensively. However, such studies were performed using spectroscopy techniques, which have low spatial resolution. Here we show the first direct visualization of QLLs on ice basal faces in the presence of hydrogen chloride (HCl) gas (model atmospheric gas) by advanced optical microscopy, which can visualize individual 0.37 nm-thick elementary steps on ice crystal surfaces. We found that the HCl gas induced the appearances of QLLs with a droplet shape in the temperature range from −15.0 to −1.5 °C, where no QLL appears in the absence of HCl gas. This result indicates that HCl gas adsorbed on ice crystal surfaces probably changed the surface structure of ice crystals and then induced the subsequent melting of ice surfaces. We also observed the movement, shape change, and splitting of the droplet QLLs when water vapor was undersaturated. The long-term (1 h) existence of the droplet QLLs under the undersaturated conditions strongly suggests that the droplet QLLs were thermodynamically stable HCl solutions. |
---|---|
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/acs.cgd.6b00044 |