Three-Dimensional Cross-Linked Arrays of Comb-Like ZnO: Epitaxial Growth and Modulation
The method to construct the three-dimensional (3D) ordered nanostructure of ZnO for improving its performance has attracted considerable attention and remains a challenging issue, which has theoretical and practical implications for nanoscale applications such as optoelectronics and gas sensors. Her...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2023-10, Vol.23 (10), p.7276-7284 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The method to construct the three-dimensional (3D) ordered nanostructure of ZnO for improving its performance has attracted considerable attention and remains a challenging issue, which has theoretical and practical implications for nanoscale applications such as optoelectronics and gas sensors. Herein, we demonstrate a straightforward chemical vapor deposition (CVD) technique for the epitaxial growth of 3D cross-linked comb-like ZnO arrays on r-plane sapphire substrates. The morphological, structural, and optical properties of the as-synthesized samples were examined using X-ray diffraction, field emission scanning electron microscopy, field emission transmission electron microscopy, Raman spectroscopy, UV–vis spectroscopy, and photoluminescence spectroscopy. A cooperative growth mechanism is suggested to construct 3D cross-linked comb-like ZnO arrays: The supersaturated alloy forms a backbone of oblique nanosails along [101̅0] by the Au-assisted catalytic vapor–liquid–solid (VLS) growth mechanism and the inevitable vapor–solid (VS) lateral extension growth process; simultaneously discrete nanoteeth are grown along the unilateral c-direction [0001] by the Zn self-catalytic VLS mechanism, culminating in a 3D cross-linked array of comb-like ZnO. The development of such a unique 3D cross-linked array allows the exploration of performance in gas-sensitive devices, optoelectronics, and quantum electrical information applications. |
---|---|
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/acs.cgd.3c00665 |