Potential of Iron Oxides in Photovoltaic Technology

Iron oxide is a multifunctional material for many applications, including photovoltaic technology. Iron oxide’s phase and crystal structures could vary and be easy to control depending on the desirable requirement for solar cell devices. Their distinctive physical and chemical properties are suited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2023-04, Vol.23 (4), p.3034-3055
Hauptverfasser: Amrillah, Tahta, Hermawan, Angga, Alviani, Vani Novita
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iron oxide is a multifunctional material for many applications, including photovoltaic technology. Iron oxide’s phase and crystal structures could vary and be easy to control depending on the desirable requirement for solar cell devices. Their distinctive physical and chemical properties are suited for solar cell applications as primary and complementary parts of solar cell devices. With their stability and abundance, iron oxides could be expected to realize highly stable and cost-efficient solar cell devices. Noting that iron oxide-based solar cells still need to be explored compared to silicon, copper, and organic-based solar cells, we compile information on the potential of iron oxides in photovoltaic technology and extract some plausible strategies to make iron oxides as the main and complementary parts for high-efficient solar cell devices in this review. The prospects and challenges of iron oxides in photovoltaic technology to bring its commercialization are also explained.
ISSN:1528-7483
1528-7505
DOI:10.1021/acs.cgd.3c00021