Attrition-Enhanced Deracemization and Absolute Asymmetric Synthesis of Flavanones from Prochiral Precursors

Seven racemic 5,7-dimethoxyflavanones afforded conglomerate crystals upon recrystallization from a solvent. Three methodologies were investigated to achieve asymmetric transformation based on dynamic crystallization of the chiral conglomerate system. The first was chiral symmetry breaking of racemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2020-09, Vol.20 (9), p.5676-5681
Hauptverfasser: Shimizu, Waku, Uemura, Naohiro, Yoshida, Yasushi, Mino, Takashi, Kasashima, Yoshio, Sakamoto, Masami
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seven racemic 5,7-dimethoxyflavanones afforded conglomerate crystals upon recrystallization from a solvent. Three methodologies were investigated to achieve asymmetric transformation based on dynamic crystallization of the chiral conglomerate system. The first was chiral symmetry breaking of racemic flavanones by attrition-enhanced deracemization. Continuous suspension of racemic flavanones in a small amount of propanol in the presence of a base (1,8-diazabicyclo[5.4.0]­undec-7-ene (DBU)) and glass beads promoted chiral symmetry breaking and converted the flavanones to crystals of (+)- or (−)-enantiomers with 78 to 99% ee. The second method involved cyclization of the intermediate aldol product to give optically active flavanone with 90% ee involving a reversible oxa-Michael addition reaction with attrition-enhanced deracemization. The third was a reaction starting from prochiral 2-hydroxy-4,6-dimethoxyacetophenone and 2-naphthaldehyde under basic conditions, which gave the corresponding flavanone in 89% ee.
ISSN:1528-7483
1528-7505
DOI:10.1021/acs.cgd.0c00955