Broad-Spectrum Antibacterial Activity of Proteolytically Stable Self-Assembled αγ-Hybrid Peptide Gels

Bacterial infections pose a serious threat to mankind, and there is immense interest in the design and development of self-assembled peptide gels using ultrashort peptides for antibacterial applications. The peptide gels containing natural amino acids suffer from poor stability against proteolytic e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2018-03, Vol.19 (3), p.782-792
Hauptverfasser: Malhotra, Kamal, Shankar, Sudha, Rai, Rajkishor, Singh, Yashveer
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial infections pose a serious threat to mankind, and there is immense interest in the design and development of self-assembled peptide gels using ultrashort peptides for antibacterial applications. The peptide gels containing natural amino acids suffer from poor stability against proteolytic enzymes. Therefore, there is a need to design and develop peptide gels with improved stability against proteolytic enzymes. In the present work, we report the synthesis and characterization of α/γ hybrid peptides Boc-D-Phe-γ4-L-Phe-PEA (NH007) and Boc-L-Phe-γ4-L-Phe-PEA (NH009) to improve the proteolytic stability. Both of the dipeptides were found to self-assemble into gels in aqueous DMSO (3–5% w/v), and the self-assembly process was studied using FTIR and CD, which indicated antiparallel β-sheet formation with random coils in NH007 gels and random or unordered conformation in NH009. The rheological studies indicated viscoelastic characteristics for both gels; the storage modulus (G′) for NH007 and NH009 gels (3% w/v) was estimated as 0.2 and 0.5 MPa, higher than the loss modulus (G′′). Also, both gels demonstrated self-healing characteristics for six consecutive cycles when subjected to varying strains of 0.1 and 30% (200 s each). The peptide gels were incubated with a mocktail of proteolytic enzymes, proteinase K, pepsin, and chymotrypsin, and stability was monitored using RP HPLC. Up to 23 and 40% degradation was observed for NH007 (3%, w/v) in 24 and 36 h, and 77 and 94% degradation was observed for NH009 (3%, w/v), within the same period. Thus α/γ hybrid peptide gels containing D-Phe exhibited higher stability than gels fabricated using L-Phe. The use of D-residue in α/γ hybrid peptide significantly enhanced the stability of peptides against proteolytic enzymes, as the stability data reported in this work are possibly the best in class. Both peptide gels exhibited broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria, such as Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. The Pseudomonas aeruginosa and Staphylococcus aureus, in particular, are known to develop resistance. The NH007 (3%, w/v) demonstrated 65% inhibition, whereas NH009 (3%, w/v) showed 78% inhibition, with potent activity against Pseudomonas aeruginosa. Mechanistic studies, using SEM, HR-TEM, and bacterial live–dead assay, indicated entrapment of bacteria in gel networks, followed by interaction with cell membrane comp
ISSN:1525-7797
1526-4602
DOI:10.1021/acs.biomac.7b01582