Novel Peptide-Based Magnetic Nanoparticle for Mesenchymal Circulating Tumor Cells Detection

The monitoring of circulating tumor cells (CTCs) has recently served as a promising approach for assessing prognosis and evaluating cancer treatment. We have already developed a CTCs enrichment platform by EpCAM recognition peptide-functionalized magnetic nanoparticles (EP@MNPs). However, considerin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-04, Vol.93 (14), p.5670-5675
Hauptverfasser: Jia, Fei, Wang, Yuehua, Fang, Zhiguo, Dong, Jierong, Shi, Fanghao, Zhang, Weikai, Wang, Zihua, Hu, Zhiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The monitoring of circulating tumor cells (CTCs) has recently served as a promising approach for assessing prognosis and evaluating cancer treatment. We have already developed a CTCs enrichment platform by EpCAM recognition peptide-functionalized magnetic nanoparticles (EP@MNPs). However, considering heterogeneous CTCs generated through epithelial-mesenchymal transition (EMT), mesenchymal CTCs would be missed with this method. Notably, N-cadherin, overexpressed on mesenchymal CTCs, can facilitate the migration of cancer cells. Hence, we screened a novel peptide targeting N-cadherin, NP, and developed a new CTCs isolation approach via NP@MNPs to complement EpCAM methods’ deficiencies. NP@MNPs had a high capture efficiency (about 85%) of mesenchymal CTCs from spiked human blood. Subsequently, CTCs were captured and sequenced at the single-cell level via NP@MNPs and EP@MNPs, RNA profiles of which showed that epithelial and mesenchymal subgroups could be distinguished. Here, a novel CTCs isolation platform laid the foundation for mesenchymal CTCs isolation and subsequent molecular analysis.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c00577