Bioluminescence DNA Hybridization Assay for Plasmodium f alciparum Based on the Photoprotein Aequorin

A bioluminescence DNA hybridization assay for the detection of Plasmodium falciparum, the most deadly species of malaria, using the photoprotein aequorin as a bioluminescent label has been developed. The current gold standard for the detection of malaria is light microscopy, which can detect down to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2007-06, Vol.79 (11), p.4149-4153
Hauptverfasser: Doleman, Leslie, Davies, Logan, Rowe, Laura, Moschou, Elizabeth A, Deo, Sapna, Daunert, Sylvia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bioluminescence DNA hybridization assay for the detection of Plasmodium falciparum, the most deadly species of malaria, using the photoprotein aequorin as a bioluminescent label has been developed. The current gold standard for the detection of malaria is light microscopy, which can detect down to ∼50 parasites/μL of blood, but has low-throughput, high costs, and requires high skill, which limit the applicability of the method, especially in the developing regions where malaria detection is mostly needed. The utilization of aequorin as a bioluminescence label offers the advantages of high signal-to-noise ratio and reliable detection down to attomole levels, allowing for the development of highly sensitive and miniaturized high-throughput bioluminescence assays. Herein, we developed a DNA hybridization assay for the detection of P. falciparum based on the competition between the target DNA and the signal generating DNA streptavidin−aequorin for hybridization with the probe DNA. This bioluminescence hybridization assay demonstrated a detection limit of 3 pg/μL and was employed for the detection of target DNA in standard and spiked human serum samples. The DNA hybridization assay was developed in a microplate format without the need for sample PCR amplification, showing the potential suitability of this method in the parallel analysis of samples by low-trained personnel, such as that typically encountered in developing regions.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0702847