Russian thistle ( Salsola tragus ) ecology in wheat cropping systems of the Pacific Northwest
Russian thistle ( Salsola tragus L.) is a significant summer annual weed in the semi-arid Pacific Northwest (PNW), causing yield losses of up to 50%. Understanding the biology and ecology of S. tragus is vital for developing effective integrated weed management (IWM) strategies. This study focused o...
Gespeichert in:
Veröffentlicht in: | Weed science 2024-10, p.1-22 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Russian thistle ( Salsola tragus L.) is a significant summer annual weed in the semi-arid Pacific Northwest (PNW), causing yield losses of up to 50%. Understanding the biology and ecology of S. tragus is vital for developing effective integrated weed management (IWM) strategies. This study focused on 1) S. tragus emergence and seedbank persistence in two cropping systems: fallow–winter wheat ( Triticum aestivum L.) and spring wheat–fallow–winter wheat rotations, and 2) S. tragus plant biomass and viable seed production in fallow and spring wheat fields. A four-year experiment (2020-2023) was conducted at the Columbia Basin Agriculture Research Center (CBARC) in Adams, OR, using a randomized block design with four replications. Salsola tragus seeds were sprinkled only at the beginning of the experiment, and seedling numbers were recorded throughout. Most seedlings emerged in the first year, with the highest rates in spring wheat (72%) and fallow (32%), followed by significantly lower rates (0.25-5%) in subsequent years. Seedling emergence began in late March and early April for the first two years but was delayed to May for the third year. Plant biomass and viable seed production were greater in fallow than in spring wheat, with early-season plants having more biomass than later-emerging plants. Plants emerged between early and mid-May produced the most viable seeds. Viable seed production was very low until it peaked in mid-September. Findings indicated that most S. tragus seedlings emerged in the first year after dispersal coinciding with spring precipitation and lasting approximately two months. Additionally, most S. tragus plants produce viable seeds in September, and seeds persist in the soil for more than two years. These results demonstrate the need for growers to control S. tragus emergence to prevent reinfestations and ultimately the need to control S. tragus plants before September to prevent the species from producing viable seed. |
---|---|
ISSN: | 0043-1745 1550-2759 |
DOI: | 10.1017/wsc.2024.77 |