On Internal Structure, Categorical Structure, and Representation
If categorical equivalence is a good criterion of theoretical equivalence, then it would seem that if some class of mathematical structures is represented as a category, then any other class of structures categorically equivalent to it will have the same representational capacities. Hudetz (2019a) h...
Gespeichert in:
Veröffentlicht in: | Philosophy of science 2023-01, Vol.90 (1), p.188-195 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 1 |
container_start_page | 188 |
container_title | Philosophy of science |
container_volume | 90 |
creator | Dewar, Neil |
description | If categorical equivalence is a good criterion of theoretical equivalence, then it would seem that if some class of mathematical structures is represented as a category, then any other class of structures categorically equivalent to it will have the same representational capacities. Hudetz (2019a) has presented an apparent counterexample to this claim; in this note, I argue that the counterexample fails. |
doi_str_mv | 10.1017/psa.2022.10 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_psa_2022_10</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_psa_2022_10</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b26a6e4a4e9990cc6ce37c4d4adb57699ab2430129ab7cb54658dfdce1c3d81f3</originalsourceid><addsrcrecordid>eNpVj0tLxDAUhYMoWEdX_oHutePNo3nslOJjYGBgRsFdSZNbqYxpSTIL_70ddOPqnO8sDnyEXFNYUqDqbkp2yYCxmU5IQWtuKiXV-ykpADitNBP6nFyk9AlAqQZdkPtNKFchYwx2X-5yPLh8iHhbNjbjxxgH93-2wZdbnCImDNnmYQyX5Ky3-4RXf7kgb0-Pr81Ltd48r5qHdeUYQK46Jq1EYQUaY8A56ZArJ7ywvquVNMZ2THCgbC7KdbWQtfa9d0gd95r2fEFufn9dHFOK2LdTHL5s_G4ptEf5dpZvj_Iz8R8DlE4G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Internal Structure, Categorical Structure, and Representation</title><source>ProQuest Central Essentials</source><source>Research Library</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>Research Library (Alumni Edition)</source><source>Research Library Prep</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><source>Cambridge University Press Journals Complete</source><creator>Dewar, Neil</creator><creatorcontrib>Dewar, Neil</creatorcontrib><description>If categorical equivalence is a good criterion of theoretical equivalence, then it would seem that if some class of mathematical structures is represented as a category, then any other class of structures categorically equivalent to it will have the same representational capacities. Hudetz (2019a) has presented an apparent counterexample to this claim; in this note, I argue that the counterexample fails.</description><identifier>ISSN: 0031-8248</identifier><identifier>EISSN: 1539-767X</identifier><identifier>DOI: 10.1017/psa.2022.10</identifier><language>eng</language><ispartof>Philosophy of science, 2023-01, Vol.90 (1), p.188-195</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c200t-b26a6e4a4e9990cc6ce37c4d4adb57699ab2430129ab7cb54658dfdce1c3d81f3</citedby><orcidid>0000-0001-6623-4529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dewar, Neil</creatorcontrib><title>On Internal Structure, Categorical Structure, and Representation</title><title>Philosophy of science</title><description>If categorical equivalence is a good criterion of theoretical equivalence, then it would seem that if some class of mathematical structures is represented as a category, then any other class of structures categorically equivalent to it will have the same representational capacities. Hudetz (2019a) has presented an apparent counterexample to this claim; in this note, I argue that the counterexample fails.</description><issn>0031-8248</issn><issn>1539-767X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVj0tLxDAUhYMoWEdX_oHutePNo3nslOJjYGBgRsFdSZNbqYxpSTIL_70ddOPqnO8sDnyEXFNYUqDqbkp2yYCxmU5IQWtuKiXV-ykpADitNBP6nFyk9AlAqQZdkPtNKFchYwx2X-5yPLh8iHhbNjbjxxgH93-2wZdbnCImDNnmYQyX5Ky3-4RXf7kgb0-Pr81Ltd48r5qHdeUYQK46Jq1EYQUaY8A56ZArJ7ywvquVNMZ2THCgbC7KdbWQtfa9d0gd95r2fEFufn9dHFOK2LdTHL5s_G4ptEf5dpZvj_Iz8R8DlE4G</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Dewar, Neil</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6623-4529</orcidid></search><sort><creationdate>202301</creationdate><title>On Internal Structure, Categorical Structure, and Representation</title><author>Dewar, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b26a6e4a4e9990cc6ce37c4d4adb57699ab2430129ab7cb54658dfdce1c3d81f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dewar, Neil</creatorcontrib><collection>CrossRef</collection><jtitle>Philosophy of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dewar, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Internal Structure, Categorical Structure, and Representation</atitle><jtitle>Philosophy of science</jtitle><date>2023-01</date><risdate>2023</risdate><volume>90</volume><issue>1</issue><spage>188</spage><epage>195</epage><pages>188-195</pages><issn>0031-8248</issn><eissn>1539-767X</eissn><abstract>If categorical equivalence is a good criterion of theoretical equivalence, then it would seem that if some class of mathematical structures is represented as a category, then any other class of structures categorically equivalent to it will have the same representational capacities. Hudetz (2019a) has presented an apparent counterexample to this claim; in this note, I argue that the counterexample fails.</abstract><doi>10.1017/psa.2022.10</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6623-4529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8248 |
ispartof | Philosophy of science, 2023-01, Vol.90 (1), p.188-195 |
issn | 0031-8248 1539-767X |
language | eng |
recordid | cdi_crossref_primary_10_1017_psa_2022_10 |
source | ProQuest Central Essentials; Research Library; ProQuest Central (Alumni Edition); ProQuest Central Student; Research Library (Alumni Edition); Research Library Prep; ProQuest Central Korea; ProQuest Central UK/Ireland; ProQuest Central; Cambridge University Press Journals Complete |
title | On Internal Structure, Categorical Structure, and Representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Internal%20Structure,%20Categorical%20Structure,%20and%20Representation&rft.jtitle=Philosophy%20of%20science&rft.au=Dewar,%20Neil&rft.date=2023-01&rft.volume=90&rft.issue=1&rft.spage=188&rft.epage=195&rft.pages=188-195&rft.issn=0031-8248&rft.eissn=1539-767X&rft_id=info:doi/10.1017/psa.2022.10&rft_dat=%3Ccrossref%3E10_1017_psa_2022_10%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |