On Internal Structure, Categorical Structure, and Representation
If categorical equivalence is a good criterion of theoretical equivalence, then it would seem that if some class of mathematical structures is represented as a category, then any other class of structures categorically equivalent to it will have the same representational capacities. Hudetz (2019a) h...
Gespeichert in:
Veröffentlicht in: | Philosophy of science 2023-01, Vol.90 (1), p.188-195 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If categorical equivalence is a good criterion of theoretical equivalence, then it would seem that if some class of mathematical structures is represented as a category, then any other class of structures categorically equivalent to it will have the same representational capacities. Hudetz (2019a) has presented an apparent counterexample to this claim; in this note, I argue that the counterexample fails. |
---|---|
ISSN: | 0031-8248 1539-767X |
DOI: | 10.1017/psa.2022.10 |