On Internal Structure, Categorical Structure, and Representation

If categorical equivalence is a good criterion of theoretical equivalence, then it would seem that if some class of mathematical structures is represented as a category, then any other class of structures categorically equivalent to it will have the same representational capacities. Hudetz (2019a) h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophy of science 2023-01, Vol.90 (1), p.188-195
1. Verfasser: Dewar, Neil
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If categorical equivalence is a good criterion of theoretical equivalence, then it would seem that if some class of mathematical structures is represented as a category, then any other class of structures categorically equivalent to it will have the same representational capacities. Hudetz (2019a) has presented an apparent counterexample to this claim; in this note, I argue that the counterexample fails.
ISSN:0031-8248
1539-767X
DOI:10.1017/psa.2022.10