Limit cycles in a rotated family of generalized Liénard systems allowing for finitely many switching lines
Analytic rotated vector fields have four significant properties: as the rotated parameter $\alpha$ changes, the amplitude of each stable (or unstable) limit cycle varies monotonically, each semi-stable limit cycle bifurcates at most two limit cycles, the isolated homoclinic loop (if exists) disappea...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2024-03, p.1-29 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Analytic rotated vector fields have four significant properties: as the rotated parameter
$\alpha$
changes, the amplitude of each stable (or unstable) limit cycle varies monotonically, each semi-stable limit cycle bifurcates at most two limit cycles, the isolated homoclinic loop (if exists) disappears while a unique limit cycle with the same stability arises or no closed orbits arise oppositely, and a unique limit cycle arises near the weak focus (if exists). In this paper, we prove that the four properties remain true for a rotated family of generalized Liénard systems having finitely many switching lines. Furthermore, we discuss variational exponent and use it to formulate multiplicity of limit cycles. Then we apply our results to give exact number of limit cycles to a continuous piecewise linear system with three zones and answer to a question on the maximum number of limit cycles in an SD oscillator. |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/prm.2024.21 |