Fixed point sets and the fundamental group II: Euler characteristics

For a finite group $G$ of not prime power order, Oliver showed that the obstruction for a finite CW-complex $F$ to be the fixed point set of a contractible finite $G$ -CW-complex is determined by the Euler characteristic $\chi (F)$ . (He also has similar results for compact Lie group actions.) We sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2023-10, p.1-20
Hauptverfasser: Cappell, Sylvain, Weinberger, Shmuel, Yan, Min
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a finite group $G$ of not prime power order, Oliver showed that the obstruction for a finite CW-complex $F$ to be the fixed point set of a contractible finite $G$ -CW-complex is determined by the Euler characteristic $\chi (F)$ . (He also has similar results for compact Lie group actions.) We show that the analogous problem for $F$ to be the fixed point set of a finite $G$ -CW-complex of some given homotopy type is still determined by the Euler characteristic. Using trace maps on $K_0$ [2, 7, 18], we also see that there are interesting roles for the fundamental group and the component structure of the fixed point set.
ISSN:0308-2105
1473-7124
DOI:10.1017/prm.2023.75