Automated detection of edge clusters via an overfitted mixture prior

Most community detection methods focus on clustering actors with common features in a network. However, clustering edges offers a more intuitive way to understand the network structure in many real-life applications. Among the existing methods for network edge clustering, the majority are algorithmi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Network science (Cambridge University Press) 2024-03, Vol.12 (1), p.88-106
Hauptverfasser: Pham, Hanh T. D., Sewell, Daniel K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most community detection methods focus on clustering actors with common features in a network. However, clustering edges offers a more intuitive way to understand the network structure in many real-life applications. Among the existing methods for network edge clustering, the majority are algorithmic, with the exception of the latent space edge clustering (LSEC) model proposed by Sewell ( Journal of Computational and Graphical Statistics, 30 (2), 390–405, 2021). LSEC was shown to have good performance in simulation and real-life data analysis, but fitting this model requires prior knowledge of the number of clusters and latent dimensions, which are often unknown to researchers. Within a Bayesian framework, we propose an extension to the LSEC model using a sparse finite mixture prior that supports automated selection of the number of clusters. We refer to our proposed approach as the automated LSEC or aLSEC. We develop a variational Bayes generalized expectation-maximization approach and a Hamiltonian Monte Carlo-within Gibbs algorithm for estimation. Our simulation study showed that aLSEC reduced run time by 10 to over 100 times compared to LSEC. Like LSEC, aLSEC maintains a computational cost that grows linearly with the number of actors in a network, making it scalable to large sparse networks. We developed the R package aLSEC which implements the proposed methodology.
ISSN:2050-1242
2050-1250
DOI:10.1017/nws.2023.22