Automated detection of edge clusters via an overfitted mixture prior
Most community detection methods focus on clustering actors with common features in a network. However, clustering edges offers a more intuitive way to understand the network structure in many real-life applications. Among the existing methods for network edge clustering, the majority are algorithmi...
Gespeichert in:
Veröffentlicht in: | Network science (Cambridge University Press) 2024-03, Vol.12 (1), p.88-106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most community detection methods focus on clustering actors with common features in a network. However, clustering edges offers a more intuitive way to understand the network structure in many real-life applications. Among the existing methods for network edge clustering, the majority are algorithmic, with the exception of the latent space edge clustering (LSEC) model proposed by Sewell (
Journal of Computational and Graphical Statistics, 30
(2), 390–405, 2021). LSEC was shown to have good performance in simulation and real-life data analysis, but fitting this model requires prior knowledge of the number of clusters and latent dimensions, which are often unknown to researchers. Within a Bayesian framework, we propose an extension to the LSEC model using a sparse finite mixture prior that supports automated selection of the number of clusters. We refer to our proposed approach as the automated LSEC or aLSEC. We develop a variational Bayes generalized expectation-maximization approach and a Hamiltonian Monte Carlo-within Gibbs algorithm for estimation. Our simulation study showed that aLSEC reduced run time by 10 to over 100 times compared to LSEC. Like LSEC, aLSEC maintains a computational cost that grows linearly with the number of actors in a network, making it scalable to large sparse networks. We developed the R package aLSEC which implements the proposed methodology. |
---|---|
ISSN: | 2050-1242 2050-1250 |
DOI: | 10.1017/nws.2023.22 |