ON -ACTIONS ON K3 SURFACES IN POSITIVE CHARACTERISTIC

In characteristic $0$ , symplectic automorphisms of K3 surfaces (i.e., automorphisms preserving the global $2$ -form) and non-symplectic ones behave differently. In this paper, we consider the actions of the group schemes $\mu _{n}$ on K3 surfaces (possibly with rational double point [RDP] singulari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2023-03, Vol.249, p.11-49
1. Verfasser: MATSUMOTO, YUYA
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In characteristic $0$ , symplectic automorphisms of K3 surfaces (i.e., automorphisms preserving the global $2$ -form) and non-symplectic ones behave differently. In this paper, we consider the actions of the group schemes $\mu _{n}$ on K3 surfaces (possibly with rational double point [RDP] singularities) in characteristic p , where n may be divisible by p . We introduce the notion of symplecticness of such actions, and we show that symplectic $\mu _{n}$ -actions have similar properties, such as possible orders, fixed loci, and quotients, to symplectic automorphisms of order n in characteristic $0$ . We also study local $\mu _n$ -actions on RDPs.
ISSN:0027-7630
2152-6842
DOI:10.1017/nmj.2022.20