ON -ACTIONS ON K3 SURFACES IN POSITIVE CHARACTERISTIC
In characteristic $0$ , symplectic automorphisms of K3 surfaces (i.e., automorphisms preserving the global $2$ -form) and non-symplectic ones behave differently. In this paper, we consider the actions of the group schemes $\mu _{n}$ on K3 surfaces (possibly with rational double point [RDP] singulari...
Gespeichert in:
Veröffentlicht in: | Nagoya mathematical journal 2023-03, Vol.249, p.11-49 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In characteristic
$0$
, symplectic automorphisms of K3 surfaces (i.e., automorphisms preserving the global
$2$
-form) and non-symplectic ones behave differently. In this paper, we consider the actions of the group schemes
$\mu _{n}$
on K3 surfaces (possibly with rational double point [RDP] singularities) in characteristic
p
, where
n
may be divisible by
p
. We introduce the notion of symplecticness of such actions, and we show that symplectic
$\mu _{n}$
-actions have similar properties, such as possible orders, fixed loci, and quotients, to symplectic automorphisms of order
n
in characteristic
$0$
. We also study local
$\mu _n$
-actions on RDPs. |
---|---|
ISSN: | 0027-7630 2152-6842 |
DOI: | 10.1017/nmj.2022.20 |