POWER SERIES PROOFS FOR LOCAL STABILITIES OF KÄHLER AND BALANCED STRUCTURES WITH MILD -LEMMA

By use of a natural map introduced recently by the first and third authors from the space of pure-type complex differential forms on a complex manifold to the corresponding one on the small differentiable deformation of this manifold, we will give a power series proof for Kodaira–Spencer’s local sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2022-06, Vol.246, p.305-354
Hauptverfasser: RAO, SHENG, WAN, XUEYUAN, ZHAO, QUANTING
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By use of a natural map introduced recently by the first and third authors from the space of pure-type complex differential forms on a complex manifold to the corresponding one on the small differentiable deformation of this manifold, we will give a power series proof for Kodaira–Spencer’s local stability theorem of Kähler structures. We also obtain two new local stability theorems, one of balanced structures on an n -dimensional balanced manifold with the $(n-1,n)$ th mild $\partial \overline {\partial }$ -lemma by power series method and the other one on p -Kähler structures with the deformation invariance of $(p,p)$ -Bott–Chern numbers.
ISSN:0027-7630
2152-6842
DOI:10.1017/nmj.2021.4