GENERIC DERIVATIONS ON ALGEBRAICALLY BOUNDED STRUCTURES

Let ${\mathbb K}$ be an algebraically bounded structure, and let T be its theory. If T is model complete, then the theory of ${\mathbb K}$ endowed with a derivation, denoted by $T^{\delta }$ , has a model completion. Additionally, we prove that if the theory T is stable/NIP then the model completion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2024-11, p.1-27
Hauptverfasser: FORNASIERO, ANTONGIULIO, TERZO, GIUSEPPINA
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ${\mathbb K}$ be an algebraically bounded structure, and let T be its theory. If T is model complete, then the theory of ${\mathbb K}$ endowed with a derivation, denoted by $T^{\delta }$ , has a model completion. Additionally, we prove that if the theory T is stable/NIP then the model completion of $T^{\delta }$ is also stable/NIP. Similar results hold for the theory with several derivations, either commuting or non-commuting.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2024.57